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Applications Challenges

e Healthcare e Computation

e Mobile Devices e Communication

e Autonomous e Model Inference

Vehicles EEbeRATED

LEARNING
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Efficient Federated Learning with Compression!
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(SOTASs) Categorized by model training
e Dense to Dense: Only gradients
e Dense to Sparse: Fxcessive memory
e Sparse to Sparse: Insufficient sparsity
level
Highlights
e Dynamic pruning with error feedback
and regularization in FL
o Sparse to Extreme Sparse (s, > 0.8 for
i.i.d and non-i.i.d)

e Convergence analysis with theoretical
support

Engineering Systems

Model Pruning

Before Pruning After Pruning
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DPF & Incremental Regularization

Knowledge & Data
Methodology 2
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(1)Regularization
(2)Dynamic Pruning

Server node

w's = agg({w,})

L w, iw, N Wy
; -, - &,
[ (= 4= [ e 4
= g il >
Client 1 Client 2 Client N

. localTraining |

Dynamic Pruning with error Feedback (DPF®):

wir1 = wi — NV f(w © my) (1)
=wi — i Vf(w +ep) (2)

Inspired by GReg?, our incremental
regularization:

0 ifo<t<j
At =19 : (3)
)‘maX(Qfl) 3 (Qfl)T
0 if 0 <t<T

@Tao Lin et al. (2019). “Dynamic Model Pruning
with Feedback”. In: International Conference on
Learning Representations (ICLR).

bHuan Wang et al. (2021). “Neural Pruning via
Growing Regularization”. In: International Conference
on Learning Representations (ICLR).



FedDIP Diagram

Methodology 2
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After Regularization

Sparse Model

Benefits:
e DPF in FL:

— Reduce downloading cost
— Avoid long time post-pruning fine-tune
— Suitable for high sparsity pruning

. Knowledge & Data
Engineering Systems

After Error Feedback

After Pruning

e IR with DPF:
— Consistent weight importance scoring
— Hessian Information for accurate
pruning
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Theorem (FedDIP Convergence)

Consider the general assumption, and let n, = tLL, L > 0. Then, the convergence rate of the FedDIP process is
bounded by:

2

1 & iy .
fgwf(w‘”nﬁ < UE(f@) - )+ oL pEElett ]+ s (@

where f(w1) and f stand for the initial loss and the final convergent stable loss, with

27252
x = M L P+ MLL—, and ~ is the data dispersion degree.




Knowledge & Data

Experimental Results
Engineering Systems

Theoretical & Experimental Results 3

Datasets & Models: Evaluate LeNet-5 (s, = 0.9) on Fashion-MNIST, AlezNet (s, = 0.9)
on CIFARI0, and ResNet-18 (s, = 0.8) on CIFARI00.

LeNet5 on Fashionmnist AlexNet on CIFAR10 ResNet18 on CIFAR100
09 07
08 S 08 et /,f
os
W or
gos g"s =ty g“ ‘,‘/"’_,,.—w'\ ....... e
3 Zos S goo if
< -3  arge0s S
g T g = L T
03 ——- FedDIP 03 0z i -=- FedDIP
I o
0 Taw 02 o | - s
- PruneTrain | PruneTrain
o o oo | st
o m @ w ww o m @ w w w o m  w  w ww
Rounds Rounds Rounds
Figure: LeNet-5: Accuracy vs Figure: AlexNet: Accuracy vs Figure: ResNet-18: Accuracy vs
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Model Performance at Different Sparsity
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Figure: Performance under Extreme
Sparsities
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Layerwise Sparsity of ResNet-18
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Figure: Sparsity Distribution of ResNet18
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Conclusion and Future Work i Engineering Systems

Impact: Because of extreme pruning in FL, FedDIP contributes as follows.

e Faster Training
e Less Memory Required

e Less Downloading Cost
Future Work

e Mask Personalization
e Decentralized FL
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Thank you!




	Introduction
	Methodology
	Theoretical & Experimental Results
	Conclusion
	Q&A

