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Introduction

Machine & Deep Learning (ML/DL) models are
typically trained using centralized data.

However, bringing all data into a centralized server
Is no longer practical:

- Violation of data privacy
- Communication burden due to data transfer
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Distributed ML Model Training

Distributed Learning facilitates access to distributed
data by training a ML model over disjoint data spaces
by leveraging nodes’ local data and computational
resources.

Aim: Train a ML model efficiently requires training
over a set of nodes, a.k.a., participants.

However, not all participants play the same role.

This is determined by:

* Amount of data and degree of heterogeneity.

* Quality of the data in each participant.

« Lack of ground truth labels (samples being
unlabeled or partially labeled).
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Problem Fundamentals

A typical FL system assumes that the labels on clients’ datasets n; € N and server’s dataset Ds are
identical. Both have the ground truth labels in the form of:

{X; ¥:}, X; isinput and y; output.

Main label issues
~ Possibility that a client n; € N exhibits different label distribution y compared to server S, P(y;) # P(ys) .
» Each local dataset D; may contain labels in {@, 1, 2, . . ., L}, where @ represents samples without labels.

» Even if y; and ys have the same number of labels and utilize the same labelling mechanism, the labels
cannot be considered entirely trustworthy.

» The ground truth labels are exclusively available at server S .

We aim to solve these issues across clients in FL with a Multi Purpose Semi Supervised
Federated Learning paradigm (MP-SSFL).
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MP-SSFL Paradigm

Phase 1. Supervised learning: the server S builds a model based on its labeled data
(Ds) to obtain: (X5 , ys ) —=f (X, 85). Then, distribute f(.,6s) to each n; € N in order to
label their own data according to it.

Phase 2: Clients pseudo-labeling: Each client n; € N uses f(., ) to predict a pseudo-

label y; for each local sample x; € n;.
» ¥, :the class with the highest predicted probability, i.e.,

yi = arg max(g0s(x;))c

*  g0Os(x;)) represents the prediction probability of class c for input x;.
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MP-SSFL Paradigm

Leveraging the pseudo label y varies between unlabeled data, non- identically labeled data, and
attacked data.

Common method: adopt a confidence threshold 7z € [0.5, 1] for the pseudo label probability:

. J1 ges(zi)ceT
¥i = 0 otherwise

» Unlabeled data: MP-SSFL considers the label if it satisfies r condition

» Non-identically labeled data. MP-SSFL considers the sample’s loss £(g0s(x;)), with y
tolerance threshold such that a label is accepted if £L <y
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MP-SSFL System Overview
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Experiments

MP-SSFL is evaluated on datasets MNIST and Fashion-MNIST compared against:

- Baseline [1]: Relevant label selection relies on a probability determined by the Relevance
Prediction Function Score for each sample.

- Baseline [2]: Label relevance selection is based on a model built only on server’s data.

[1] T. Tuor, S. Wang, B. J. Ko, C. Liu, and K. K. Leung, “Overcoming noisy and irrelevant data in federated learning,”
25th International Conference on Pattern Recognition (ICPR). IEEE, 2021, pp. 5020-5027.

[2] L. Nagalapatti, R. S. Mittal, and R. Narayanam, “Is your data relevant?: Dynamic selection of relevant data for
federated learning,” AAAI Conference on Artificial Intelligence, vol. 36, no. 7, 2022,pp. 7859-7867.
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Experiments
MXNIST
Model Baselinel Baselinel MP-55FL
Client 10 50 104 10 50 100 10 50 100
200 Sample | 7460 74695 14695 | Ba35 B497 B435 | B9.73 BB4S  BIO8
500 Sample | 73.94 749 7435 #4522 B4.42  B44 | B35 BR29 BETA
1000 S-:El:l'llllt‘: 74359 74369 7456 BL63  B424  R436 | Bl56  90ORT 9124
F-MNIST
200 Sample | 6275 6205 6747 76.7 7779 7478 | B411 BSOS B4.93
500 Sample | 6745  68.09 679 J405  T476 7433 | B53T7  BAYD B6.2T
1000 Sample | 6865 6742 763 74.9 T4.0 T4.5 #6535 BA664 BST3
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