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Abstract

We revisit the “self-ownership” viewpoint to regulate the utilisation of common property
resources. Allocating to each agent "the fruit of their own labor" is typically ill-defined, so we
look for tight approximations of this decentralised ideal. For each agent i two guarantees limit,
from above and below, the impact of other agents on i’s allocation. They limit the range of
unscripted negotiations, or the choice of a full sharing rule.
Our context-free model of the commons is a mapping W from profiles of "types" to a freely

transferable amount of benefit or cost. If W is super (resp. sub) modular there is a single tight
upper (resp. lower) guarantee, and an infinite menu of tight lower (resp. upper) guarantees,
each one conveying a precise normative viewpoint. We describe the menu for essentially all
modular two person problems, and familiar examples like the allocation of an indivisible item,
cooperative production, and facility location.
JEL classification codes: D6, D63

1 Introduction

The effi cient exploitation of common property resources, that we call a commons for short, includes
the division of private commodities, sharing a production function, assigning costs to jointly liable
agents etc... Even under the strong simplifying assumptions that the agents have identical rights
to these resources and are fully responsible for their own type (which may represent preferences,
needs, skills, efforts, location ...) it is not clear how to take effi ciently into account the differences
in individual types while fairly respecting the equality of the agents’rights?

A first uncontroversial step is Horizontal Equity: two agents with identical types must be treated
equally, a compelling property when, as they do here, types capture all the features relevant to the
allocation problem under scrutiny. We assume the stronger property called Anonymity: swapping
the (possibly different) types of two agents exchanges their allocations and does not affect that of
other agents.

These two properties as well as the Effi ciency requirement, are context-free (independent of the
physical description of the commons), universally applicable, and always bite.

We propose a new context-free fairness principle to manage a commons, inspired by the Lockean
maxim that each agent should receive “the fruit of their own labor”([16]), in modern terminology
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the “self-ownership”viewpoint (more on this in the literature review). In our abstract model of the
commons where agents are responsible for their own type, the proposal to “reward each agent for
their own type”is appealing but hopelessly ambiguous: there is typically no clear way to disentangle
the contributions of individual types to a particular outcome.

Consider for instance the classic cooperative production model where n agents each enter an
input xi (their type) in the function F and must share the output F (xN ) (where xN =

∑n
i=1 xi).

Individual contributions to the output are unambiguous if, and only if, F has constant returns to
scale (CRS): F (xN ) =

∑n
i=1 F (xi). Then the division of the output can be decentralised as if each

agent was using their input in a private copy of the technology and i’s share is F (xi).1

In our abstract context-free commons the resources are black-boxed as a functionW inputting a
n-profile x of types xi and returning the output W(x) (benefit or cost). For tractability we assume
that output is freely transferable accross agents, for instance by cash transfers. Moreover W is
symmetric in its n variables, which is necessary to make sense of the Anonymity property. The
allocation of output is decentralisable if the function W is separably additive: for some real valued
function g of a single type we have

W(x) =
n∑
i=1

g(xi)

for all profiles x = (xi)
n
1 .

Taking this decentralisation property as normatively desirable but out of reach in all interesting
commons problems, we approximate it. If my share cannot be independent of other agents’types,
the second best goal is to minimise this influence as much as possible.

Formally we look for a pair of guarantees g− and g+ such that, for all profiles x = (xi)
n
1 ,

n∑
1

g−(xi) ≤ W(x) ≤
n∑
1

g+(xi) (1)

and in addition these guarantees are “tight”: increasing the lower guarantee g−(xi) (resp. de-
creasing the upper guarantee g+(xi)) at any type xi violates the left hand (LH) (resp. the RH)
inequality above at some profile containing xi.

In the next four paragraphs we briefly describe our general results (Sections 4 and 7) about
the tight solutions of system (1) for an abstract function W. The proof that our approach casts a
useful light on the perennial challenge of managing a commons is in the pudding of a half-dozen
concrete microeconomic examples developed in Sections 2, 5 and 6.

The first clue about the set of tight guarantees is a simple observation. Define the unanimity
share of type xi as his fair share at the hypothetical profile denoted (

n
xi) where all agents have the

same type: una(xi) = 1
nW(

n
xi). At such unanimous profile the inequalities imply, whether g± are

tight or not,
g−(xi) ≤ una(xi) ≤ g+(xi)

If the function xi → una(xi) itself is a lower guarantee it must be tight,2 therefore it is the only
tight lower guarantee. Insisting that type xi’s share of output be at least una(xi) is the reasonable
statement that differences in types should be to everyone’s (weak) advantage. Similarly if una is an
upper guarantee it is the only tight one, and we require that differences in types be to everyone’s
(weak) disadvantage.3

1This solution of the CRS commons is often taken as a primitive requirement in the axiomatic discussion of the
cooperative production problem (e. g. [21]); it can also be deduced from its incentive properties ([15]).

2 If una(xi) < g−(xi) then g− does not produce a feasible lower guarantee at (
n
xi).

3These properties are called “diversity of preferences dividend" and “of preferences burden”in ([32]), p.112-114.
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The proof of the second key fact requires more work. If the functionW describing the commons
is supermodular4 then una is an upper guarantee, hence the unique tight one; and ifW is submod-
ular una is the unique tight lower guarantee (Proposition 4.1). Most of our results and examples
apply to modular functions to take advantage of this crucial simplification.

On the other side of the tight unanimity bound we find instead an infinite menu of tight
guarantees. Each one of these places different limits on individual claims or liabilities and suggests
a different interpretation of individual rights as a function of responsible types. Each example,
starting in Secion 2, adds a context to the abstract commons and normative content to the menu
of tight guarantees.

In Section 4 we also identify, for any modular functionW, two tight guarantees on the other side
of the unanimity one. These two incremental guarantees denoted ginc, ginc adapt to our model the
stand alone share of an agent using the commons without sharing it with anyone else (Proposition
4.2); if H and L are respectively the largest and smallest type, they achieve the largest and the
smallest gap g(H)− g(L) among all tight guarantees (Lemma 4.1).

The next general result, Theorem 7.1, is a full characterisation of all tight lower (resp. upper)
guarantees for two person commons with one-dimensional types, when W(x1, x2) is strictly super-
or submodular. They are parametrised by the choice of a decreasing, continuous and symmetric
function from the set of types into itself. Therefore their set is of infinite dimension, and the same
is true with more than two agents.

Section 5 focuses on the classic commons W(x) = F (xN ) illustrated when F maps inputs to
output (Example 5.1), demands to cost (Section 5.3), or location on a line to transportation costs
(Example 5.2). The unanimity share una(xi) = 1

nF (nxi) is the tight lower guarantee if F is convex
(W supermodular), the tight upper one iff F is concave (W submodular). Although we do not
describe the full set of tight guarantees we identify two interesting subsets, both of them linking
the two incremental guarantees common to all modular functions. The first one has only (n − 2)
guarantees of the stand alone type: Proposition 5.1. The second set is a continuous line, containing
most of the tangents to the graph of the unanimity function: Proposition 5.2.

Our second characterisation result applies to a rich class of functionsW modular but not strictly
so (unlike Theorem 7.1) where the types xi are again one dimensional. The first example, in the
introductory Section 2, is the submodular commons W(x) = maxi{xi} that we interpret in two
ways: sharing the cost of a public facility ([14]) or assigning an indivisible item and cash transfers.
The tight lower guarantee is una(xi) = 1

nxi; on the other side there is a one dimensional set of tight
upper guarantees parametrised by a “benchmark”type p and easy to interpret: Proposition 2.1.

Theorem 6.1 is a considerable generalisation of this first example. Write the order statistics
of (xi)

n
1 as (xk)n1 (where x

1 = maxi{xi} and xn = mini{xi}) and call rank separable a commons
of the form W(x) =

∑
[n]wk(x

k). If such a function is modular (requiring the wk+1 − wk to be
increasing in type) then the tight guarantees (opposite to the the unanimity one) are parametrised
by an arbitrary (n− 1)-vector or types c = (ck)

n−1
1 in the following stand alone form:

g−(xi) =W(xi; c)−
1

n
(
n−1∑
k=1

W(ck; c))

Applications include capacity and facility location problems: Examples 6.1, 6.2. We also de-
scribe the tight guarantees of the non modular commons W(x) = xk for k between 2 and n − 1:
Example 6.3.

4 If x1 < x∗1 the difference W(x∗1, x2, x−1,2)−W(x1, x2, x−1,2) increases weakly in x2.
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tight guarantees and sharing rules Tight guarantees help to manage a commons in two ways.
First to promote participation in an unscripted negotiation by minimising its stakes: a type xi

agent can reject any agreement where her share falls outside the interval [g−(xi), g
+(xi)], confident

that if no agreement is reached the manager will pick an (arbitrary) outcome within these bounds
for each i.

Second, it delivers a sharp normative test for any deterministic division rule, that is any map-
ping ϕ computing at each profile of types x the individual shares (ϕi(x))n1 such that W(x) =∑n

i−1 ϕi(x). Each such rule implements its own lower and upper guarantees for each type xi:
g−(xi) = minx−i{ϕi(xi, x−i)} and g+(xi) = maxx−i{ϕi(xi, x−i)}. Our test dismisses the rules im-
plementing non tight guarantees and partitions the others according to the tight pair they generate;
each set of this infinite partition is itself infinite (Lemma 3.3).

In the classic commons W(x) = F (xN ) with F concave it is easy to see that the venerable
Average Return (AR) rule ϕi(x) = xi

xN
F (xN ) gives to each type xi below the average type a share

below the unanimity lower guarantee 1
nF (nxi), imposing on them low returns that they are not

responsible for ([21]).5 Lemma 5.1 dismisses similarly the Shapley sharing rule.
But the increasing and decreasing Serial rules (Definition 4.3) implement respectively the tight

pairs (una, ginc) and (una, ginc). This statement generalises to all modular functions W: Proposi-
tion 4.3.

It may not be easy, given a particular sharing rule, to decide if it implements tight guarantees or
not. But the answer to the converse question is easy: given a pair of tight guarantees any sharing
rule delivering shares within the interval it defines implements exactly these guarantees (Lemma
3.3). We can construct such rules by simple extrapolations of the guarantees, or by “trimming”an
arbitrary sharing rule when its shares violate the guarantees.

related literature The first modern mathematical fair division model, cast in the context of
cake cutting ([29], [12] [9]), had a simple message:if utilities are non atomic and additive over the
cake every agent can guarantee a fair 1

n share of her utility for the whole cake. This is precisely
the unanimity guarantee, after generalising our abstract model without transferable utility.

When economists joined the discussion of fair division in the early 70-s, the concept of en-
dogenous fair share —in our terminology a guaranteed worst case utility against other adversarial
participants —maintained its prominence. If we divide a bundle ω of private Arrow Debreu (AD)
commodities and preferences are convex, the allocation 1

nω is the compelling fair share because it
delivers the unanimity utility ([34], [31]); the latter is also recognised in the allocation of indivisible
items with cash transfers ([30], [2]).

In the next two decades, endogenous lower and upper bounds on individual welfare play an
important role in the axiomatic discussion of cooperative production. The stand alone utility (from
using a private copy of the production function) joins the unanimity utility and sits on the opposite
side of the Pareto frontier when the returns to scale are monotonic ([27], [18], [21], [36]). The
same is true in the public good provision model irrespective of returns ([19]); see also a proposal
of weaker bounds in ([10]).

Endogenous guarantees appear also in the axiomatic bargaining model ([33]) with a focus on
variations in the set of agents rather than the agents’preferences.

In this century computer scientists and others are still searching for a compelling concept of
fair share for the allocation of indivisible items (good or bad) even when utilities are additive: only

5 If F is convex AR allows agents with a below average input xi to free ride on high returns they did not contribute
to, contradicting again the unanimity upper guarantee.
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a little more than a 3
4 fraction of the plausible MaxMinShare (MMS) is feasible at all profiles ([6],

[25], [1]) and this may or may not define a tight guarantee; see also other concepts in ([8]), ([17]),
([13]) and ([3]).

Another widely open question is the search for tight guarantees in cake division with non additive
utilities or for dividing AD commodities with non convex preferences ([4]).

Our interpretation of self-ownership as a pair of lower and upper bounds on welfare introduces
the new viewpoint that minimising the best case utility (against adversarial others) is as important
as maximising the worst case utility. The assumption that the agents are fully responsible for their
own type avoids a familiar controversy around the “neo-Lockean”self-ownership maxim, defended
by Nozick ([24]) but criticised for its potentially libertarian implications by Roemer ([26]) and
Cohen ([7]).

We also diverge from the context dependent interpretation of common ownership derived from
the Resource Monotonicity property: when the shared resources improve, all the participants should
weakly benefit. This fairness test is in fact incompatible with the unanimity fair share if we divide
AD commodities ([23]), and with the unanimity utility in the cooperative production commons
([22]).

Our abstract model of the commons delivers general results (in Sections 3, 4) that we apply to
a great variety of microeconomic examples. But the assumption that utility is transferable by some
numeraire is typically absent in the above literature.

contents of the next sections An asterisk signals those already described above.
Section 2F: the introductory example.
Section 3 introduces the model for a general functionW and domain X , lists various topological

properties, and two critical Lipschitz and differentiability properties that tight guarantees inherit
from the function W. The long list of technical Lemmas can be skipped by the reader impatient
to discover the implications of tight guarantees in the concrete commons of sections 4, 5 and 6.

Section 4F: general results for modular functions: on one side una is the unique tight guarantee,
on the other two canonical incremental tight guarantees.

Section 5F: the classic commons W(x) = F (xN ).
Section 6F: the modular rank separable functions and their tight guarantees (Theorem 6.1).
Section 7F: the tight guarantees of strictly modular two person commons (Theorem 7.1).
Section 8 collects two open questions and some take home points
Section 9 is an Appendix gathering several long or minor proofs.

2 A canonical example

Example 2.1 sharing the cost of a capacity ([14])
The n agents share a public facility (canal, broadband,...) adjusted to their different needs (for

a canal more or less wide or deep, for a small or large broadband). The cost of building enough
capacity to serve the needs of agent i is xi; the cost of serving everyone is W(x) = maxi∈[n]{xi},
that must be divided in n shares yi s. t.

∑
[n] yi = maxi∈[n]{xi}. The range of possible individual

needs xi is the interval [L,H] where 0 < L < H.

The unanimity share una(xi) = 1
nxi is a lower guarantee because

∑
[n]

1
nxi ≤ maxi∈[n]{xi},

therefore as noted in the Introduction una is the only tight guarantee on the Left Side of (1): agent
i should pay at least her fair share of the capacity she needs. Our first result describes all solutions
of the RH inequalities.

We use the notation z+ = max{z, 0} and the proof uses two easy Lemmas from Section 3.
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Proposition 2.1: The minimal upper guarantees g+
p of W(x) = max1≤i≤n{xi} are parametrised

by a benchmark type p ∈ [L,H] as follows:

g+
p (xi) =

1

n
p+ (xi − p)+ for xi ∈ [L,H] (2)

Proof6: Checking that g+
p meets the RH inequalities in (1) is routine and omitted for brevity.

Next we pick an arbitrary tight upper guarantee g+ and set p = ng+(L). At the unanimous
profile of L-s the RH of (1) implies p ≥ L. Tightness implies that g+ increases weakly (Lemma 3.4)
so g+(xi) ≥ 1

np for all xi. The constant function
1
nH is an upper guarantee therefore if p > H g+

is not tight: so p ∈ [L,H].
Inequality (1) applied to xi and n − 1 types L gives g+(xi) ≥ xi − n−1

n p; combining this with
g+(xi) ≥ 1

np gives g
+ ≥ g+

p . Because g
+ is tight and g+

p is an upper guarantee this must be an
equality, which also implies that g+

p is tight. �
The two end-points guarantees in (2) are

g+
L (xi) = xi −

n− 1

n
L ; g+

H(xi) =
1

n
H for xi ∈ [L,H]

Type xi’s worst cost share in g+
L is

n−1
n (xi − L) over and above the best one una(xi) = 1

nxi.
7

In contrast gH is the same worst cost share for everyone. The pair of guarantees (una, g+
L ) implies

that a type L always pays exactly 1
nL, while under (una, g+

H) she can pay as much as 1
nH; vice

versa a type H always pays 1
nH under the latter pair and as much as H − n−1

n L under the former.
Agents with small needs prefer g+

L above g
+
H , those with large needs g

+
H above g+

L .
Under the compromise pair (una, g+

p ) the benchmark type p always pays 1
np and this is the

worst cost share for all types below p, similar to g+
H , while types above p can pay as much as

xi − n−1
n p, similar to g+

L .
In certain profiles of types the pair (una, g+

p ) determines the full profile of shares: say xi∗ ≥ p

and xj ≤ p for all j 6= i∗, then yi∗ = xi∗ − n−1
n p and yj = 1

np for j 6= i∗.
The serial sharing rule (proposed by ([14]) for this problem) implements the tight pair (una, g+

L ).
Order the agents by increasing type, then charge y1 = 1

nL+ 1
n(xi−L), y2 = y1 + 1

n−1(x2−x1), etc..
The easy proof is a special case of Proposition 4.3. The tight pair (una, g+

H) is implemented by the
much simpler Equal-Split rule yi = 1

n maxi∈[n]{xi}, ignoring all differences in types.
To implement the pair (una, g+

p ) we can for instance combine these two rules as follows (there
are many other ways: Lemma 3.3). Write x̃i = min{xi, p}, x̂i = (xi − p)+, and define

ϕp(x) = ϕegal(x̃) + ϕser(x̂)

where ϕegal is Equal-Split and the serial rule ϕser is applied to the interval [0, H − p].
Importantly the familiar Proportional sharing rule ϕproi (x) = xi

xN
maxj∈[n]{xj} (well defined

everywhere because L > 0) implements neither a tight lower nor a tight upper guarantee. Its best
and worst case cost shares are easily computed as

g−pro(xi) =
x2
i

xi + (n− 1)H
(3)

g+
pro(xi) = max{ x2

i

xi + (n− 1)L
,

Hxi
xi +H + (n− 2)L

}

6The result is a special case of Theorem 6.1, but this redundant short proof is much easier to follow.
7 In Section 3.2 g+L will be the incremental guarantee starting from L, denoted ginc.
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so that g−pro(xi) <
1
nxi for all xi except H, with equality at H.

Clearly g+
pro increases in xi and g

+
pro(L) = HL

H+(n−1)L . Set p = nHL
H+(n−1)L and mimick the steps

in the proof of Proposition 2.1 to conclude that g+
pro(xi) ≥ g+

p (xi) for all xi. This is an equality at
L and H but a strict inequality in the neighborhood of L and H, therefore g+

p improves upon g
+
pro.

Remark 2.1 In general the Equal-Split rule is not even compatible with our interpretation
of self-ownership for separably additive functions W. The fact that it implements here the pair
of tight guarantees (una, ginc) is an interesting exception: this situation essentially characterises
this iconic example. Suppose W is weakly increasing and submodular (defined in Section 4) in
[L,H][n]. If the equal split rule yi = 1

nW(x) implements the unanimity lower guarantee then

minx−i
1
nW(xi;x−i) = 1

nW(xi;
n−1
L ) must equal una(xi) = 1

nW(
n
xi) (Proposition 4.1); this implies

that W takes the form W(x) = w(maxi∈[n]) for some weakly increasing function w in X ; and
Equal-Split also implements the flat upper guarantee 1

nw(H).

3 General model

The set of agents is [n] = {1, · · · , n} and X is the common set of types. All properties in this
section apply if X is a compact subset of a general euclidian space RA partially ordered in the
usual way, an assumption maintained in this section except for statement ii) in Lemma 3.9 where
X is a compact interval in RA.

At the profile x = (xi)i∈[n] ∈ X [n] we must divide the benefit or cost W(x). The function W is
symmetric in the n variables xi and continuous.

A division ofW(x) is y = (yi)i∈[n] ∈ R[n] s. t.
∑

[n] yi =W(x). A sharing rule maps each profile

x ∈ X [n] to a division of W(x).

3.1 lower and upper guarantees

Definition 3.1: The functions g− and g+ from X into R are respectively a lower and an upper
guarantee of W if and only if they satisfy the inequalities: for x ∈ X [n]∑

i∈[n]

g−(xi) ≤ W(x) ≤
∑
i∈[n]

g+(xi) for x ∈ X [n] (4)

We write G−,G+ the sets of such guarantees.

Given two lower guarantees g1, g2 ∈ G− we say that g1 dominates g2 if g1(xi) ≥ g2(xi) for
xi ∈ X and g1 6= g2. The guarantee g ∈ G− is tight if increasing its value at a single x1 ∈ X creates
a violation of the LS inequality in (4) for some x−1 ∈ X [n−1].

The isomorphic statement for upper guarantees in G+ flips the domination inequality around
and for tightness replaces increasing by decreasing and LS by RS.

We write G− and G+ for the subsets of tight guarantees in G− and G+.

Lemma 3.1 For ε = +,− every guarantee g ∈ Gε�Gε is dominated by a tight one.
This is a simple application of Zorn’s Lemma.

The restriction of W to the diagonal of X [n] defines the unanimity share of agent i:

una(xi) =
1

n
W(

n
xi) (5)

where the notation (
m
z ) is the m-vector with z in each coordinate.
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We repeat for completeness two observations made in the Introduction.

Lemma 3.2
i) For any (g−, g+) ∈ G− ×G+ and for xi ∈ X

g−(xi) ≤ una(xi) ≤ g+(xi) (6)

ii) If una is a lower guarantee it dominates each lower guarantee; this is also true for upper
guarantees. For ε = +,−:

una ∈ Gε =⇒ Gε = {una}

If W is additively separable it takes the form W(x) =
∑

[n] una(xi) and statement ii) implies
Gε = {una} for ε = +,−. Conversely if Gε = {una} for ε = +,− then una satisfies both sides of
(4) so that W is additively separable. In any other case there is a real choice of at least one type
of tight guarantees.

A pair of tight guarantees is implemented by many different sharing rules ϕ.

Lemma 3 3. Fix the function W and a tight pair (g−, g+) ∈ G− × G+. If the sharing rule ϕ
satisfies g−(xi) ≤ ϕi(x) ≤ g+(xi) for all i and x then it implements (g−, g+): for all i and x

min
x−i
{ϕi(xi, x−i)} = g−(xi) ; max

x−i
{ϕi(xi, x−i)} = g+(xi)

This follows at once from the tightness of g− and g+.

The moving average of g− and g+ is the simplest sharing rule implementing this pair in G−×G+:

ϕi(x) = λg−(xi) + (1− λ)g+(xi)

where λ is chosen s. t. for all x ∈ X [n]

λ
∑
[n]

g−(xi) + (1− λ)
∑
[n]

g+(xi) =W(x)

Also, for any given sharing rule ϕ that does not implement (g−, g+) it is easy to adjust it only at
those profiles where if fails at least one of these bounds so that the adjusted rule ϕ̃ does implement
the pair of guarantees and preserves the choices of ϕ as much as possible.

3.2 regularity and topological properties

Lemma 3.4 If X is ordered by � and W is weakly increasing in x, so is every tight guarantee in
Gε, for ε = +,−.

Proof Fix g ∈ G−. If xi � x′i and g(xi) < g(x′i) define g̃(xi) = g(x′i) and g̃ = g otherwise, then
check that g̃ is still in G−. This contradicts that g is tight. �

Lemma 3.5 For ε = +,−, fix an equi-continuous function W in X [n].
i) A tight guarantee g ∈ Gε is continuous in X .
ii) A guarantee g in Gε is tight if and only if: for all xi ∈ X there exists x−i ∈ X [n−1] s. t.

g(xi) +
∑

j∈[n]�i

g(xj) =W(xi, x−i) (7)

Then we call (xi, x−i) a contact profile of g at xi ; the set of such profiles is the contact set
C(g) of g.

Proof in the Appendix 9.1.
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Lemma 3.6 For ε = +,−,
i) For any x1 ∈ X there is a tight guarantee g ∈ Gε s.t. g(x1) = una(x1).
ii) The set Gε is a singleton only if it contains una.

Proof in the Appendix 9.2.

By statement ii) and the comments after Lemma 3.2 we see that G− and G+ are both singletons
if and only if W is additively separable.

Next we state without proof two useful invariance properties.

Lemma 3.7 For ε = +,−,
i) If W0 is additively separable, W0(x) =

∑
[n]w0(xi), and W is symmetric on X [n] we have

Gε(W +W0) = Gε(W) + {w0}

ii) Change of the type variable. If θ is a bicontinuous increasing bijection xi = θ(zi) from Z
into X , W is defined on X [n] and g ∈ Gε(W), then g ◦ θ ∈ Gε(W̃) where W̃(z) = W(θ(z)) and
θ(z)i = θ(zi). If θ is decreasing, ceteris paribus, then g ◦ θ ∈ G−ε(W̃).

For instance the problem W(x) = F (maxi∈[n]{xi}) reduces to W̃(z) = maxi∈[n]{zi} by the
change xi = F−1(zi); and W(x) = mini∈[n]{xi} reduces to W̃(z) = maxi∈[n]{zi} by the change of
variable xi = −zi.

3.3 Lipschitz and differentiability properties

They are key to the characterisation results in sections 6,7, 8.

Lemma 3.8 Fix g ∈ G+. For any xi, x′i and any contact profile (xi, x−i) of g at xi we have

g(x′i)− g(xi) ≥ W(x′i, x−i)−W(xi, x−i) (8)

and the opposite inequality if g ∈ G−.
Proof In the inequality

g(x′i) +
∑
j 6=i

g(xj) ≥ W(x′i, x−i)

we replace each term g(xj) by W(xi, x−i)− g(xi)−
∑

k 6=i,j g(xk) and rearrange it as follows

(n− 1)(W(xi, x−i)− g(xi))− (n− 2)
∑
j 6=i

g(xj) ≥ W(x′i, x−i)− g(x′i)

⇐⇒W(xi, x−i)− g(xi) + (n− 2)(W(x)−
∑
[n]

g(xj)) ≥ W(x′i, x−i)− g(x′i)

The term in parenthesis is zero by our choice of x−i so we are done. �
Our last general result is critical to both Theorems 6.1 and 7.1, where it is only used in a

one-dimensional interval of types. But its statement and proof are just as easy when X is a
multidimensional interval.

Lemma 3.9
i) Suppose K is a positive constant, X ⊂ RA and the function W is K-Lipschitz in each xi,
uniformly in x−i ∈ X [n−1]. Then so is each tight guarantee g ∈ Gε for ε = +,−.
ii) Suppose X = [L,H] is the interval L ≤ x ≤H in RA. We fix xi ∈ X , a tight guarantee g ∈ Gε
for ε = +,− and a contact profile (xi, x−i) of g at xi. If for some a ∈ A, g and W(·, x−i) are both
differentiable in xia at xi, we have

9



if La < xia <Ha
dg

dxia
(xia) =

∂W
∂xia

(xi, x−i) (9)

if xia = La and g ∈ G−, or xia = Ha and g ∈ G+

dg

dxia
(xia) ≤

∂W
∂xia

(xi, x−i)

if xia = Ha and g ∈ G−, or xia = La and g ∈ G+

dg

dxia
(xia) ≥

∂W
∂xia

(xi, x−i)

Proof Statement i) If g ∈ G− inequality (8) and the Lipschitz assumption imply g(xi)−g(x′i) ≤
K‖xi− x′i‖ (where ‖ · ‖ is the norm w. r. t. which W is Lipschitz). Exchanging the roles of xi and
x′i gives g(x′i)− g(xi) ≤ K‖x′i − xi‖ and the conclusion.

Statement ii) Note that if the functions f, g of one real variable z are differentiable at some z0

in the interior of their common domain and the inequality f(z) − f(z0) ≥ g(z) − g(z0) holds for
z close enough to z0, then their derivatives at z0 coincide. By inequality (8) we can apply this to
the functions xia → g(xi) and xia → W(xi, x−i), which proves (9). The last two inequalities are
equally easy to deduce from (8). �

For a fixed coordinate a ∈ A the Lipschitz property in statement i), that we call uniformly
Lipschitz by a slight abuse of terminology8, implies that g is differentiable in xia almost everywhere
in [La,Ha]. All our examples in sections 5,6,7 involve functionsW uniformly Lipschitz in this sense,
therefore all corresponding tight guarantees are differentiable almost everywhere in each coordinate
of xi.

Corollary to Lemma 3.9 Suppose X = [L,H] ⊂ R, W is differentiable in [L,H][n]. Then
for ε = +,− the tight guarantees in Gε are characterised by their contact set C(g): for any two
different g, h ∈ Gε we have C(g) 6= C(h).

Moreover any (true) convex combination of two or more guarantees in Gε stays in Gε but leaves
Gε: ]g, h[∩Gε = ∅.

Proof. By statement ii) in the Lemma if C(g) = C(h) we get dg
dx = dh

dx in the interval ]L,H[ so
g and h differ by a constant, and if the constant is not zero one of g, h is not tight.

For the second statement suppose that G− contains g, h and 1
2(g+h), all different. Fix xi ∈]L,H[

and a contact profile (xi, x̃−i) of 1
2(g + h) at xi. Clearly x̃−i is also a contact profile of g and of

h at xi. Again by statement ii) this implies
dg
dxi

(xi) = dh
dxi

(xi) = ∂iW(xi, x̃−1) almost surely in
xi ∈]L,H[. We conclude that g − h is a constant and get a contradiction of g 6= h. The argument
for larger convex combinations with general weights is entirely similar. �

4 Modular functions W
In this class of benefit and cost functions that includes most of our examples, the analysis of tight
guarantees simplifies.

The type space X is a compact subset of RA for Proposition 4.1, a compact interval in RA for
Proposition 4.2, and a one-dimensional interval in Proposition 4.3.

8Because we only require the Lipschitz property in each coordinate xi.
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Definition 4.1 We call W supermodular if for i, j ∈ [n] and x, x′ in X [n] such that xk = x′k for
all k 6= i, j we have

{xi ≤ x′i, xj ≤ x′j} =⇒W(x′i, xj ;x−i,j) +W(xi, x
′
j ;x−i,j) ≤ W(x) +W(x′) (10)

We say that W is strictly supermodular if whenever (xi, xj) � (x′i, x
′
j) the RH of (10) is strict.

And W is submodular or strictly so if the opposite inequalities holds under the same premises. A
modular function is one that is either supermodular or submodular.

An equivalent definition of supermodularity is useful too: for i, j ∈ [n] and x, x′ in X [n] s. t.
xj ≤ x′j for all j

W(x′i, x−i)−W(xi, x−i) ≤ W(x′i, x
′
−i)−W(xi, x

′
−i) (11)

The Appendix 9.3 lists other well known properties of the partial derivatives of modular func-
tions that are useful in some of the long proofs.

4.1 the unanimity guarantee of modular functions

Proposition 4.1 If W is supermodular the unanimity function (5) is the unique tight upper
guarantee: G+ = {una}. It is the unique tight lower guarantee if W is submodular: G− = {una}.

Notation: when the ordering of the coordinates does not matter (z;
k
y) represents the (k + 1)-

vector where one coordinate is z and k coordinates are y.
Proof Fix W supermodular. For n = 2 the statement una ∈ G+ follows fromuna ∈ G+ and

amounts to
W(x1, x2) ≤ 1

2
(W(x1, x1) +W(x2, x2))

a consequence of supermodularity and W(x1, x2) =W(x2, x1).
By induction we assume the statement is true up to (n − 1) agents and fix a n-person super-

modular function W and a profile x ∈ X [n]. As una is an upper guarantee of the (n − 1)-benefit
function W(·;xi) we have, for all i and xi

W(x) ≤ 1

n− 1

∑
j∈[n]�{i}

W(xi;
n−1
xj ) =⇒ nW(x) ≤ 1

n− 1

∑
(i,j)∈P

W(xi;
n−1
xj ) (12)

where P is the set of ordered pairs (i, j) in [n].

Fix now a pair i, j and apply the same property of una for W(·;xj) at the profile (xi,
n−2
xj ):

W(xi;
n−1
xj ) ≤ 1

n− 1
((n− 2)W(

n
xj) +W(xj ;

n−1
xi ))

Summing up both sides over (i, j) ∈ P and writing S for the summation in the RH inequality of
(12) gives

S ≤ (n− 2)
n∑
j=1

W(
n
xj) +

1

n− 1
S =⇒ S ≤ (n− 1)

n∑
j=1

W(
n
xj)

Combining the RH of (12) with the latter inequality concludes the proof.
The proof for a submodular W exchanges a few signs. �
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4.2 two canonical incremental guarantees

We look now at tight guarantees on the other side of the unanimity one.
Wether W is modular or not, for each unanimity profile (

n
xi) there is a non empty subset of

tight lower guarantees g− for which (
n
xi) is a contact profile: g−(xi) = una(xi) (Lemma 3.6).

For a strictly modular function we expect this set to be infinite, as described in Theorem 7.1 for
two person problems. But there are two important exceptions at the when the set of types is a
multi-dimensional interval.

Proposition 4.2 Suppose X is an interval [L,H] ⊆ RA and W is supermodular. Then

W has exactly one tight lower guarantee with the unanimous contact profile (
n
L) and one with

contact profile (
n
H), called respectively the left-incremental ginc and right-incremental ginc: for all

xi ∈ [L,H]

ginc(xi) = W(xi;
n−1
L )− n− 1

n
W(

n
L) (13)

ginc(xi) = W(xi;
n−1
H )− n− 1

n
W(

n
H)

If W is submodular replace lower guarantee by upper guarantee in the statement.

In Example 2.1 these two guarantees are the end-points g+
L and g+

H of G+. Here too, if W is
supermodular andW(x) a surplus, ginc favors the types xi close to L who get a share close to their
best case una(xi), and ginc favors those close to H. Isomorphic comments obtain if W(x) is a cost
and/or W is submodular.

Proof FixW supermodular and check first that ginc is a feasible lower guarantee. If n = 2 this
follows at once from (10). If n = 3 we must show the following inequality for any x:

W(x1,L,L) +W(x2,L,L) +W(x3,L,L) ≤ W(x1, x2, x3) + 2W(L,L,L)

We use the symmetry of W to apply successively (10) and (11):

W(x1,L,L) +W(L, x2,L) ≤ W(x1, x2,L) +W(L,L,L)

W(L,L, x3)−W(L,L,L) ≤ W(x1, x2, x3)−W(x1, x2,L)

and sum up these two inequalities.
The argument for any n is now clear: in the desired inequality∑

[n]

W(xi;
n−1
L ) ≤ W(x) + (n− 1)W(

n
L)

we replace the the first two terms on the LH by W(x1, x2;
n−2
L ) +W(

n
L): by (10) this increases

weakly the LH so it is enough to check

W(x1, x2;
n−2
L ) +

n∑
3

W(xi;
n−1
L ) ≤ W(x) + (n− 2)W(

n
L)

Next by (11) we replace the two first terms on the LH by W(x1, x2, x3;
n−3
L ) +W(

n
L) and so on.

12



Next ginc is tight by by (13) and Lemma 3.5, because (xi;
n−1
L ) is a contact profile of ginc at any

xi. Finally if another lower guarantee g− is s. t. g−(L) = 1
n(

n
L) we have for all xi

g−(xi) + (n− 1)g−(L) ≤ W(xi;
n−1
L ) =⇒ g−(xi) ≤ ginc(xi)

so g− is either equal to ginc or not tight.
The proofs for ginc and/or submodular W are identical up to switching the relevant signs. �
Call the function W monotonic if it is weakly increasing or weakly decreasing; then by Lemma

3.4 every tight guarantee g of W is monotonic as well, and we call the difference |g(H) − g(L)|
its spread. In Example 2.1 the spread of g+

p is H − p, largest for g+
L and smallest for g+

H . This
observation generalises.

Lemma 4.1 If W is weakly increasing and super or submodular, the two incremental guarantees
have the smallest and largest spread among all tight guarantees on the other side of the unanimity
one.

Proof We fix W supermodular, and a tight guarantee g− ∈ G−; by Lemma 3.4 g− is weakly
increasing. Pick a contact profile x−i of g− at L then apply successively Lemma 3.8 at H and L,
and supermodularity:

g−(H)− g−(L) ≥ W(H, x−i)−W(L, x−i) ≥

≥ W(H,
n−1
L )−W(L,

n−1
L ) = ginc(H)− ginc(L)

Taking now a contact profile y−i of g− at H we have similarly

g−(L)− g−(H) ≥ W(L, y−i)−W(H, y−i) ≥

≥ W(L,
n−1
H )−W(H,

n−1
H ) = ginc(L)− ginc(H)

therefore the spread of g− is at least that of ginc and at most that of ginc. The submodular case is
similar. �

Remark 4.1: If W is strictly super or submodular and X is a real interval, then a tight

guarantee g on the other side of una can have at most one unanimous contact
n

(x1), i. e., there
cannot be two types x1, x2 s. t. g(xi) = una(xi) for i = 1, 2.9 Many examples where g has no
unanimous contact profile are in Proposition 5.2 and Theorem 6.1.

4.3 implementing the incremental guarantees: the serial rules

We adapt to our model these well known sharing rules, originally introduced for the commons
problem with substitutable inputs ([21], [28]), the object of the next section.

Definition 4.3 Suppose X is an interval [L,H] ⊆ R. The increasing Serial sharing rule
(SER↑) ϕser↑ is defined by the combination of two properties a) it is symmetric in its variables and
b) the share of agent i with type xi is independent of other agents’larger shares.10

When the agents are labelled by increasing types as x1 ≤ x2 ≤ · · · ≤ xn agent i’s share is:

ϕser↑i (x) =
W(x1, · · · , xi−1,

n−i+1
xi )

n− i+ 1
−

i−1∑
j=1

W(x1, · · · , xj−1,
n−j+1
xj )

(n− j + 1)(n− j) (14)

9 If there is we compute W( nx1) +W(
n
x2) = ng(x1) + ng(x2) = (g(x2) + (n− 1)g(x1)) + (g(x1) + (n− 1)g(x2)) and

the latter term is bounded by W(x2;
n−1
x1 ) +W(x1;

n−1
x2 ) so we contradict the assumptions on W.

10The share ϕi(x) does not change if agent j’s type changes from xj to x′j both weakly larger than xi.
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We omit this computation for brevity: see the details in ([20]) where this is equation (6).
The decreasing Serial rule SER↓ is defined symmetrically by property a) and b)* agent i’share

is independent of other agents’smaller shares. It is given by the same expression (14) if we label
the agents by decreasing types.

Proposition 4.3 Fix a supermodular function W in [L,H][n].
The SER↑ rule implements both the left-incremental and unanimity guarantees ginc, una. The
SER↓ rule implements both ginc and una.

The isomorphic statement for submodular functions exchanges left- and right- incremental guar-
antees.

Proof in Appendix 9.4.

5 Substitute inputs

In this section the function W takes the form W(x) = F (xN ). The classic interpretation is a pro-
duction function F in which the agents’non negative inputs xi are perfect substitutes; alternatively
xi is a demand of output and F (xN ) is the cost of meeting total demand. This problem is super-
modular if (and only if) F is convex and submodular if F is concave. In the above interpretations F
is increasing, but none of the results in this section require this assumption; in the facility location
Example 5.2 below F is not monotonic.

5.1 stand alone guarantees

For a general function W a stand alone guarantee is one that takes the form g(xi) =W(xi, c)− γ
where c ∈ X [n−1] and γ ∈ R are constant. IfW is modular the left and right incremental guarantees
are prime examples of tight stand alone guarantees (Proposition 4.2); we will find many more in
Section 6.1.

In the substitute inputs model we find n− 2 additional tight stand alone guarantees linking the
two incremental ones. Types xi vary in the real interval [L,H] and the domain of F is [nL, nH].

Proposition 5.1
i) If F is convex in [nL, nH] the supermodular commons W(x) = F (xN ) admits n tight lower
guarantees g`,h, where `, h ∈ N ∪ {0} are s. t. `+ h = n− 1: for xi ∈ [L,H]

g`,h(xi) = F (xi + (`L+ hH))− 1

n
{`F ((`+ 1)L+ hH) + hF (`L+ (h+ 1)H)} (15)

In particular gn−1,0 = ginc and g0,n−1 = ginc ((13)).
ii) The gap una(xi)− g`,h(xi) is minimal at the benchmark type xi = 1

n−1(`L+ hH).
iii) If F is strictly convex only ginc and ginc have a unanimous contact point.

If F is concave (15) defines n tight upper guarantees with the same properties for the gap
g`,h − una and contact points.

Proof in the Appendix 9.5.

Example 5.1: Commons with complementary inputs
A project wil return one unit of surplus if and only if all agents succeed in completing their own

part. Agent i’s effort xi ∈ [L,H] is also the probability that i is successful, and [L,H] ⊂]0, 1[. The
agents share the expected return

W(x) = x1x2 · · ·xn for x ∈ [L,H][n]
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The function W is supermodular so una(xi) = 1
nx

n
i is the single tight upper bound on type xi’s

share: a larger share is feasible only if xi gets a free ride from some higher effort types.
By Lemma 3.7 the change of variable xi = ezi transformsW into W̃(z) = ezN and the guarantees

(15) for W̃ correspond for W to n tight lower guarantees linear in type:

g`,h(xi) = L`Hh(xi −
1

n
(`L+ hH))

ginc(xi) = Ln−1(xi −
n− 1

n
L)

ginc(xi) = Hn−1(x− n− 1

n
H)

We see that ginc(xi) ≥ 1
nL

n: providing even the minimal effort L guarantees the share una(L) =
1
nL

n. But ginc is much more generous to high effort, it guarantees 1
nH

n to the maximal effort H;
this is feasible by charging cash penalties to all “slackers”, defined as those with xi < n−1

n H; for
instance type L pays out |ginc(L)| = Hn−1(n−1

n H − L) in the worst case where all others provide
maximal effort H.

The n− 2 other guarantees g`,h allow the manager to adjust, along a grid increasingly fine as n
grows, the critical effort level 1

n(`L+ hH) guaranteeing a positive share of output.

5.2 tangent and hybrid guarantees

If the general function W is globally convex and differentiable in [L,H][n] the tangent at any point
(α, una(α)) of its unanimity graph defines a feasible but not necessarily tight lower guarantee
gα ∈ G−: for xi ∈ [L,H]

gα(xi) =
1

n
W(

n
α) + ∂1W(

n
α)(xi − α)

Indeed the LS of (4) is now

W(
n
α) + ∂1W(

n
α)(xN − nα)) ≤ W(x)

precisely the tangent hyperplane inequality of W at (
n
α) because W is symmetric.

For the globally convex W(x) = F (xN ) we find that many of the tangents to the unanimity
graph are tight lower guarantees: those touching that graph inside the subinterval of [L,H] left
after deleting 1

n -th at each end. And on the deleted intervals we construct guarantees concatenating
(parts of) a tangent and a stand alone guarantee. We obtain in this way a continuous line of tight
guarantees with the two incremental ones at its endpoints.

Proposition 5.2: If F is convex in [nL, nH] the supermodular commons W(x) = F (xN )
admits the following tight lower guarantees gα, where α ∈ [L,H] and gL = ginc, gH = ginc.

i) If n−1
n L + 1

nH ≤ α ≤ 1
nL + n−1

n H the graph of gα is tangent to that of una at nα: for
L ≤ xi ≤ H

gα(xi) =
1

n
F (nα) +

dF

dx
(nα)(xi − α) (16)

ii) If L ≤ α ≤ n−1
n L+ 1

nH the graph starts as a tangent then takes a stand alone shape:
for L ≤ xi ≤ nα− (n− 1)L

gα(xi) =
1

n
F (nα) +

dF

dx
(nα)(xi − α)
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for nα− (n− 1)L ≤ xi ≤ H

gα(xi) = F (xi + (n− 1)L)− (n− 1)

n
F (nα) + (n− 1)

dF

dx
(nα)(α− L) (17)

iii) If 1
nL+ n−1

n H ≤ α ≤ H the graph starts as a stand alone then turn into a tangent:
for L ≤ xi ≤ nα− (n− 1)H

gα(xi) = F (xi + (n− 1)H)− n− 1

n
F (nα)− (n− 1)

dF

dx
(nα)(H − α)

for nα− (n− 1)H ≤ xi ≤ H

gα(xi) =
1

n
F (nα) +

dF

dx
(nα)(xi − α)

If F is concave in [nL, nH] the same gα, α ∈ [L,H], are tight upper guarantees of W.
Proof

Statement i) We already noted that gα is inG−. For tightness we fix a type xi and look for a vector
x−i such that xi + xN�i = nα: then (16) implies

∑
[n] gα(xj) = F (nα) so (xi, x−i) is a contact

profile of gα at xi by Lemma 3.5. Such x−i exists if and only if xi+(n−1)L ≤ nα ≤ xi+(n−1)H,
precisely as we assume.

Statement ii) At a profile x where xi ≤ nα− (n− 1)L for all i, we just saw that g meets the LH of
(4). We check now this inequality for a profile x where the first t types are above nα − (n − 1)L,
t ≥ 1, and the other n− t types (possibly zero) are below that bound.

In the LH of (4) a type xi for i ≤ t affects the difference F (xi + xN�i) − F (xi + (n − 1)L);
as xN�i ≥ (n − 1)L the inequality in question is most demanding (the difference is smallest) if
xi = nα − (n − 1)L. Similarly a type xj for j > t, if any, affects ∆ = F (xj + xN�j) − dF

dx (nα)xj .
The derivative of ∆ w.r.t. xj is weakly increasin; at xj = L it is dF

dx (L + xN�j) − dF
dx (nα), non

negative because t ≥ 1 implies xN�j ≥ nα− (n−1)L+(n−2)L = nα−L. Therefore the inequality
in question is most demanding if xj = L. It is then enough to check

tgα(nα− (n− 1)L) + (n− t)gα(L) ≤ F (tnα− (t− 1)nL)

⇐⇒ dF

dx
(nα)(t− 1)n(α− L) ≤ F (tnα− (t− 1)nL)− F (nα)

which follows at once from the convexity of F .
Checking tightness. At a type xi ≤ nα− (n− 1)L we have

xi + (n− 1)L ≤ nα ≤ xi + (n− 1)(nα− (n− 1)L)

(replace xi by L on the RH and rearrange). As in the proof of statement i) this implies the existence
of a contact profile (xi, x−i) entirely inside [L, nα − (n− 1)L]. And at a type xi ≥ nα − (n− 1)L

we also see that (xi,
n−1
L ) is a contact profile of gα.

We omit the symmetric proof of statement iii). �
Example 5.2 sharing the cost of the variance
Agents choose a type xi in [0, 1] and must share (n times) the variance of their distribution:

W(x) =
∑
[n]

x2
i −

1

n
(
∑
[n]

xi)
2 (18)
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For instance xi is i’s location in [0, 1] and a public facility is located at the mean 1
nxN of this

distribution, to minimise the quadratic transportation costs to the facility: the total cost W(x) is
precisely (18).

The problem is submodular and una(xi) ≡ 0: no one should get a net profit but everyone can
hope that his type is adopted by everyone else, in which case there is no cost. By statement i) in
Lemma 3.7 and a change of sign, every tight upper guarantee g+ of W obtains from a tight lower
guarantee g∗ of W∗(x) = (xN )2 as g+(xi) = x2

i − 1
ng
∗(xi).

The tangent lower guarantees ofW∗ (statement i) in Proposition 5.2) are g∗α(xi) = nα(2xi−α),
corresponding to the tight upper guarantees g+

α (xi) = (xi−α)2 of W for α ∈ [ 1
n ,

n−1
n ]: the location

α is "free", a type α never pays, and the worst cost share at other locations is exactly the travel
cost to the benchmark. But if α is L or H the guarantees g(xi) = x2

i and (1 − xi)2 are not tight,
and dominated by the incremental guarantees ginc(xi) = n−1

n x2
i and g

inc(xi) = n−1
n (1− xi)2.

The tight guarantees g+
h in Proposition 5.1, indexed by the single integer h = 0, 1, · · · , n − 1

are:

g+
h (xi) =

n− 1

n
(xi −

h

n− 1
)2 + δh

where δh = h(n−1−h)
n2(n−1)

. As δh ≤ 1
4n if n is large and α '

h
n−1 the guarantees g

+
α and g

+
h are similar:

g+
h is

n−1
n flater than g+

α and smaller at 0 and 1, but unlike g+
α , it never vanishes.

5.3 a minimalist example

With this extremely simple two-piece linear convex cost function C we restrict attention to tight
lower guarantee with the same two-piece linear shape and the kink at the same place as C: this sim-
plification makes it easy to describe the constraints they entail. But we still find a two-dimensional
continuum of such guarantees.

Three agents can each engage in a potentially polluting activity at a level xi in [0, 2]. Total
activity x123 below 3 is costless, but requires cleaning at price 1 above 3: C(x123) = (x123 − 3)+.

The single tight upper guarantee una(xi) = (xi − 1)+ means that a “clean” type xi ≤ 1 will
never pay (but could be paid), because costs can only occur if the other two agents pollute more
than 2xi; while “dirty”types xi ≥ 1 may pay the full cleaning cost of their excess pollution.

Proposition 5.1 proposes three stand alone lower guarantees: for all xi ∈ [0, 2]

ginc(xi) = 0 ; ginc(xi) = xi − 1 ; g∗(xi) = (xi − 1)+ −
1

3

Under ginc a clean type is also never paid, while a dirty type xi may be lucky and pay nothing
(if total pollution is at most 3) but will pay the full xi − 1 if xj = xk = 1.11

The contrast is sharpest with ginc charging for sure the full xi− 1 to a dirty type, and allowing
a clean type to be compensated as much as |xi − 1|. The latter happens if xjk > 3 (so xj , xk are
both dirty): agents j, k together pay xjk − 2 when the actual cost is only xijk − 3, therefore xi
receives the full savings 1− xi that she generated.

The compromise guarantee g∗ (for ` = h = 1 in the Proposition) caps the compensation for
clean behavior to 1

3 . Fix any xi ≤ 1 and suppose xj = 0 and xk = 2: then there is no cleaning cost
but xk pays at least 2

3 , which is only possible if types xi and 0 get 1
3 each (and xk pays exactly

2
3).

The full set of two-piece linear lower guarantees with a kink at 1 is parametrised by α ∈
[0, 1

3 ], β ∈ [3α, 1] as follows

gα,β(xi) =
−(α+ (β − 3α)|xi − 1|)
β(xi − 1)− α if

xi ≤ 1
xi ≥ 1

11Note that ginc is characterised in G− by the fact that the super-clean type 0 is never compensated.
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where for α = 0 and β ∈ [0, 1] we recognise the guarantees tangent to the unanimity function
at 1 (Proposition 5.2) with end points g0,0 = ginc and g0,1 = ginc. Then g∗ strikes a plausible
compromise where every type’s cost share varies by exactly 1

3 as a function of the other two types.

5.4 two familiar sharing rules and their guarantees

While Proposition 4.3 shows that the two Serial sharing rules implement the two incremental
guarantees, we check that the guarantees implemented by the two prominent rules Average Returns
and the Shapley value are not tight either from above or below.

We fix F strictly concave on R+ and such that F (0) = 0, and the set of types [L,H] s. t.
0 ≤ L < H. The two sharing rules are:

Average Returns (AR): ϕari (x) = xiAF (xN ), with the notation AF (z) = F (z)
z ;12

Shapley value (Sha): ϕShai (x) = ES(F (xi + xS)− F (xS)), where the expectation is over S,∅ ⊆
S ⊆ N�{i}, uniformly distributed

Lemma 5.1 For the Average and Shapley rules on [L,H]:

g−ar(xi), g
−
Sha(xi) < una(xi) =

1

n
F (nxi)

for xi ∈ [L,H[, with equality at H.
If L > 0 we have

g+
ar(xi), g

+
Sha(xi) > ginc(xi) = F (xi + (n− 1)L)− n− 1

n
F (nL)

for xi ∈]L,H] with equality at L.
If L = 0 we have g+

ar = g+
Sha = ginc.

Proof For the AR rule the average return AF decreases strictly so that g−ar(xi) = xiAF (xi +
(n − 1)H) < xiAF (nxi) on [0, H[. Similarly on [L,H] we have g+

ar(xi) = F (xi + (n − 1)L) =
ginc(xi) + n−1

n F (nL) so that g+
ar is only tight if L = 0 and in that case it is ginc.

For the Shapley rule the strict concavity of F implies, for xi < H

g−Sha(xi) =
1

n

n−1∑
k=0

(F (xi + kH)− F (kH))

<
1

n

n−1∑
k=0

(F (xi + kxi)− F (kxi)) =
1

n
F (nx)

Similarly

g+
Sha(xi) =

1

n

n−1∑
k=0

(F (xi + kL)− F (kL))

If L = 0 this gives g+
Sha = ginc. If L > 0 and xi > L we sum up, for 1 ≤ k ≤ n − 1, the

inequalities
F (xi + (k − 1)L)− F (kL) > F (xi + (n− 1)L)− F (nL)

=⇒ g+
Sha(xi) >

n− 1

n
(F (xi + (n− 1)L)− F (nL)) +

1

n
F (xi + (n− 1)L) = ginc(xi)

12At the profile (
n

0) the definition needs adjusting, e. g. to equal split, but this does not affect the computations of
worst and best cases.
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6 Rank separable functions

In this section like the previous and next ones the domain of types X is an interval [L,H] ⊆ R.
The decreasing order statistics of the profile x ∈ [L,H][n] is written (xk)nk=1, so x

1 = maxi{xi} and
xn = mini{xi}. The statement “xi is of rank k in profile x”is unambiguous if xi is different from
every other coordinate; otherwise we mean that xi appears at rank k for some weakly increasing
ordering of the coordinates of x.

Definition 6.1 The function W on [L,H][n] is called rank-separable if there exist n equicon-
tinuous real valued functions wk on [L,H] s. t. wk(L) = w`(L) for k, ` ∈ [n] and for x ∈ [L,H][n]

W(x) =

n∑
k=1

wk(x
k) (19)

A rank-separable function is almost everywhere separably additive: this is true in the open cone
of [L,H][n] defined by the strict inequalities x1 < x2 < · · · < xn and in the n! isomorphic cones
obtained by permuting the coordinates.

Recall that the equicontinuous functions wk are differentiable almost everywhere (a. e.) in
[L,H].

Lemma 6.1 The rank-separable function (19) is supermodular if and only if we have: for
k ∈ [n− 1] and a. e. in xi ∈ [L,H]

dwk
dx

(xi) ≤
dwk+1

dx
(xi) (20)

It is submodular iff the opposite inequalities hold.

Proof in Appendix 9.6.
For instance max[n]{xi} = x1 (Example 2.1) is submodular while min[n]{xi} = xn is supermod-

ular.
To introduce our next result we writeW(x) = x1 and write differently the tight upper guarantees

g+
p in (2) (Proposition 2.1)

g+
p (xi) = (xi − p)+ +

1

n
p =W(xi,

n−1
p )− n− 1

n
W(

n
p)

At the beginning of section 5.1 we called this the stand alone form gc,γ(xi) = W(xi, c) − γ
where c ∈ [L,H][n−1] is a (n − 1)-profile of types and γ ∈ R. Other examples are the incremental
guarantees (Proposition 4.2) and the n guarantees in Proposition 5.1. In all cases (xi, c) is a contact
profile of every type xi; applying this fact to each of the n− 1 types ck determines γ as a function
of c and W.

Definition 6.2 Fix a function W and c ∈ [L,H][n−1]. If the function gc on [L,H]

gc(xi) =W(xi, c)−
1

n
(

n−1∑
k=1

W(ck, c)) (21)

is a feasible (upper or lower) guarantee in Gε, we call it a general stand alone guarantee.
Then gc is tight and (xi, c) is a contact profile for all xi.

Verifying the contact property gc(xi) +
∑n−1

1 gc(ck) =W(xi, c) in (21) is straightforward.

Theorem 6.1 Fix a rank-separable and supermodular function W. The set of its tight lower
guarantees is given by (21) for all possible choices of c: G−(W) = {gc; c ∈ [L,H][n−1]}. If instead
W is submodular, this is the set of its tight upper guarantees.
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Proof in Appendix 9.7.

If the parameter c = (
n−1
c0 ) is unanimous the tight guarantee gc(xi) = W(xi;

n−1
c0 ) − n−1

n W(
n
c0)

“touches”the unanimity guarantee at c0, gc(c0) = una(c0): c0 is the benchmark type p in Example
2.1, L for ginc and H for ginc. But if c is not unanimous, we do not expect the graph of these two
functions to intersect.

Example 6.1 sharing baby sitting costs
Three agents with one child each need help starting at time 0 and ending at different times xi in

[0, H]. The hourly rate increases more than linearly in the number of children to supervise: $1 for
one child, $3 for two and $6 for all three. Keeping in mind x1 ≥ x2 ≥ x3 the total, supermodular,
cost is

W(x) = x1 + 2x2 + 3x3

The uncontroversial unanimity upper guarantee una(xi) = 2xi charges the per person rate for
three children. A pair c−, c+ defining a tight lower guarantee cuts an interval [c−, c+] of “normal”
demands for which type xi pays the marginal cost 2 minus a fixed rebate; for lower demands the
marginal cost is higher at 3 but the rebate is higher; and vice versa for demands larger than normal.
We write δ = 1

3(c+ − c−) for the per person normal rebate:

g−c (xi) =
3xi − (δ + c−)

2xi − δ
xi + 1

3(2c+ + c−)
if

0 ≤ xi ≤ c−
c− ≤ xi ≤ c+

c+ ≤ xi ≤ H
so g−c touches una only if c

− = c+.
Note that a low demand type can end up paid by the others: this happens if c− < 1

7c
+ for

xi <
1
2δ (in the lowest range of xi), and if c

− > 1
7c

+ for xi < 1
3(δ + c−) (in the middle range.

Example 6.2 sharing a connection cost
After each agent i chooses a location xi in the interval [L,H] they must share the cost of

connecting them (e. g. by building a road) which we assume linear in the largest distance between
agents: for x ∈ [L,H][n]

W(x) = x1 − xn (22)

Should an agent be penalised (pay more than the average) for being far away at the periphery
of the distribution of agents, and if so, by how much?

The cost function W is submodular and the tight lower guarantee is una(xi) ≡ 0: everyone’s
best case is to pay nothing (as in Example 5.2, the cost is zero at a unanimous profile). By Theorem
6.1 a tight upper guarantee involves the choice of n− 1 variables ck.

For n = 2 equation (21) describes G+ as: g+
c (xi) = |xi − c| where c ∈ [L,H]. For n ≥ 3 we see

in (21) that only the largest and smallest values c+ and c− matter:

gc(xi) = (max{xi, c+} −min{xi, c−})−
n− 1

n
(c+ − c−)

Setting µ = 1
n(c+ − c−) we develop this equation as follows: gc(xi) = µ if c− ≤ xi ≤ c+; gc(xi) =

µ+ (c− − x) if L ≤ xi ≤ c−; gc(xi) = µ+ (x− c+) if c+ ≤ xi ≤ H.
All types in the benchmark interval [c−, c+] have the same worst cost share µ; a type outside

this interval could pay, in addition to µ, the full connecting cost to the benchmark.
If c− = c+ = c∗ an agent locating at c∗ pays nothing (irrespective of other agents’ location)

and gc(xi) = |xi − c∗|. While if (c−, c+) = (L,H) the worst cost share is 1
n(H − L) for everybody,

compatible with the Equal-Split sharing rule, and many others.

Example 6.2A facility location with linear transportation costs
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The optimal location is the median of the profile of types (as opposed to its mean in Example
5.2). Assume n = 2q + 1 is odd so the median is xq+1 and the agents share the cost

W(x) =

q∑
k=1

xk −
2q+1∑
`=q+2

x`

a submodular and rank separable function similar to (22). Again the unanimity cost is zero and,
surprisingly, the set G+ is two-dimensional and very similar to the one we just described: in the
expression of gc simply replace c+ by cq and c−by cq+1, and the coeffi cient n−1

n by q+1
q (we omit

the tedious computations).

In our last example the function Wk is neither sub nor supermodular.
Example 6.3 production with quota
Fix n and a quota k, 2 ≤ k ≤ n−1. Agent i inputs the effort xi: to achieve the output y = F (z)

we need at
least k agents contributing an effort at least z: for x ∈ [L,H]n]

Wk(x) = F (xk) for x ∈ [L,H]n] (23)

If k = 1 this is the submodular Example 2.1, up to a change of variable, and if k = n this is its
supermodular mirror image. For other values of k Wk is not modular.

Clearly una(xi) = 1
nF (xi) is neither a lower guarantee nor an upper guarantee: there is now

a one dimensional choice of tight guarantees on both sides of (4). The set G+
k is parametrised by

p ∈ [L,H]:

g+
k,p(xi) =

1

n
F (p) +

1

k
(F (xi)− F (p))+

and G−k is similarly parametrised by q ∈ [L,H]:

g−k,q(xi) =
1

n
F (q) +

1

n− k + 1
(F (xi)− F (q))

The proof, in Appendix 9.8, mimicks that of Proposition 2.1.
If p = q = z∗ this “standard” level of effort guarantees the share 1

nF (z∗). If the actual input
xk is below z∗ the “slackers” inputting a sub-standard effort get on average less than 1

nF (z∗) if
there are some hard working agents who get at least > 1

nF (xk). Symetrically if xk is above z∗ the
“slackers”cannot get more than the standard share 1

nF (z∗), and may get less if more than k agents
input xi larger than z∗.

7 Two person modular problems

In two person strictly modular problems with one-dimensional types we describe the tight solutions
of system (4) on the other side of the unanimity by their contact set. For a tight guarantee g this set
has the simple shape of a decreasing and occasionally multivalued function ϕ described in the next
two Lemmas. Conversely we can pick any such function ϕ and integrate the differential equation
dg
dxi

(xi) = ∂W
∂xi

(xi, ϕ(xi)) (Lemma 3.9) to get an integral representation of the tight guarantee of
which ϕ describe the contact set. This is the closed form solution of the functional inequalities (4).

Given a modular functionW on [L,H]2 and g ∈ G±(W), a tight guarantee on either side of (4),
we define the contact correspondence ϕ:

ϕ(x1) = {x2 ∈ [L,H]|g(x1) + g(x2) =W(x1, x2)} (24)
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(non empty by Lemma 3.5) and write its graph Γ(ϕ).

Lemma 7.1 If W is supermodular, g ∈ G− and Γ(ϕ) contains (x1, x2) and (x′1, x
′
2) s.t.

(x1, x2)� (x′1, x
′
2), then (x1, x

′
2), (x′1, x2) ∈ Γ(ϕ) as well, and W is not strictly supermodular.

For a submodular function W replace G− by G+.
Proof We sum up the two equalities in (24) for (x1, x2) and (x1′, x2′):

W(x1, x2) +W(x′1, x
′
2) = {g(x1) + g(x′2)}+ {g(x′1) + g(x2)} ≤ W(x1, x

′
2) +W(x′1, x2)

Combined with the supermodular inequality (10) this gives an equality and the conclusion by
Definition 4.1. As explained in Appendix 9.3 we conclude that W is locally additive. �

Lemma 7.2 Fix a strictly supermodular function W and a tight guarantee g ∈ G− — or a
submodular W and g ∈ G+ —with contact correspondence ϕ.
i) Γ(ϕ) is symmetric: x2 ∈ ϕ(x1)⇐⇒ x1 ∈ ϕ(x2) for all x1, x2.
ii) ϕ is convex valued: ϕ(x1) = [ϕ−(x1), ϕ+(x1)], single-valued a.e., and upper-hemi-continuous
(its graph is closed).
iii) ϕ− and ϕ+ are weakly decreasing and x1 ≤ x′1 =⇒ ϕ−(x1) ≥ ϕ+(x′1); ϕ is the u.h.c. closure of
both ϕ− and ϕ+.
iv) ϕ(L) contains H and ϕ(H) contains L.
v) ϕ has a unique fixed point a: a ∈ ϕ(a), and a is an end-point of ϕ(a).

Proof in Appendix 9.9.

Theorem 7.1 Fix a strictly super (resp. sub) modular function W, continuously differentiable
in [L,H]2.
i) For any correspondence ϕ as in Lemma 7.2, the following equation

g(x1) =

∫ x1

a
∂1W(t, ϕ(t))dt+ una(a) (25)

defines a tight lower guarantee g ∈ G− (resp. G+).
ii) Conversely if g is a guarantee in G− (resp. G+) with contact correspondence ϕ (as in Lemma
7.2) then g takes the form (25).

Proof in Appendix 9.10.
So the sets G± on the other side of unanimity are parametrised by a large set of functions

ϕ. After choosing the benchmark type a which guarantees the share una(a) we can pick any
decreasing single-valued function ϕ from [L, a] into [a,H] mapping L to H, then fill the (countably
many) jumps down to create the correspondence ϕ of which the graph connects (L,H) to (a, a),
and finally extend ϕ to [a,H] by symmetry of its graph around the diagonal of [L,H]2.

We illustrate this embarrassement of riches in the commons with substitute inputs (Section 5).

Example 7.1 Commons with substitutable inputs
We have W(x) = F (x1 + x2) and F is strictly concave on [0, 1].
The contact correspondence of the incremental guarantees ginc is ϕinc(0) = [0, 1];ϕinc(x1) = 0

for x1 ∈]0, 1] ; and ϕinc simply exchange the role of 0 and 1.
Proposition 5.1 has no bite for n = 2. Statement i) in Proposition 5.2 delivers a single full

tangent guarantee g 1
2
in (16) with the anti-diagonal contact function ϕ 1

2
(xi) = 1− xi. The contact

functions of the guarantees in statements ii) and iii) are two-piece linear. For instance if α ∈ [0, 1
2 ]:

ϕα(0) = [2α, 1]; ϕα(xi) = 2α− xi on ]0, 2α] and ϕα(xi) = 0 on [2α, 1].
To find new tight upper guarantees connecting ginc and ginc we pick ϕ with a similar piecewise

constant graph. For β ∈ [0, 1] define ϕβ ≡ 1 on [0, β[; ϕβ(β) = [β, 1]; ϕβ(xi) = β on ]β, 1[;
ϕβ(1) = [0, β]. Equation (25) gives
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gβ(xi) =
F (xi + 1)− F (β + 1) + 1

2F (2β)
F (xi + β)− 1

2F (2β)
if

xi ≤ β
xi ≥ β

concatenating two different stand alone-like pieces, connected at xi = β where they touch the
unanimity graph but, unlike the gα-s in Proposition 5.2, the connection is not smooth.

Taking the symmetric of ϕβ around the anti-diagonal we find, after similar computations, a
second family of non smooth concatenations of stand alone-like pieces:

gβ(xi) =
F (xi + γ)− 1

2F (2γ)
F (xi)− F (γ) + 1

2F (2γ)
if

xi ≤ γ
xi ≥ γ

8 Concluding comments

We start with two open questions.

extending Theorem 7.1 for n ≥ 3 The key for two agent problems is the deep understanding
of the contact correspondence of any tight guarantee (Lemmas 7.1, 7.2 ). We could not gain a
similar understanding of this correspondence with three or more agents. In particular Lemma 7.2
shows that in a two agent problem the contact set of every tight guarantee g in Gε intersects the
diagonal (g touches una): this gives the starting point of the integral equation (25). But we saw in
Proposition 5.1 and Theorem 6.1 when n ≥ 3 many tight guarantees of which the contact set does
not intersect the diagonal.

multi-dimensional types The general results in Section 3 apply to functions W of m real
variables xi for any m, and so do the Propositions 4.1 and 4.2 for general modular functions. On
the way to further develop the multidimensional analysis we run into an extremely challenging
decentralisation question.

The following claim is obvious from the definitions and Lemma 3.5. Suppose each type has two
components xi = (x1

i , x
2
i ) ∈ X 1 ×X 2 = X and pick two functions W1 on X 1[n] and W2 on X 2[n]. If

gεi ∈ Gε(Wi) for some ε = +,− and both i = 1, 2, then gε1 + gε2 is a tight guarantee of the function
W adding the two independent problems as W(x) =W1(x1) +W2(x2) for x ∈ X .

We do not know for which domain of functions W the converse decentralisation property holds:
every tight guarantee gε of W1+W2 (two functions in the domain) is the sum of two tight guarantees
in the component problems.

The answer eludes us even for the specific problem of assigning more than one indivisible object
and cash transfers when utilities are additive over objects (and linear in money): the corresponding
function W is the sum of problems Wa(x

a) = maxi∈[n]{xai } over several objects a. With much
sweat we showed that the decentralisation property holds for two agents and two objects!13

relation to optimal transport The tight guarantees g− and g+ to a given symmetric function
W are its best approximations by symmetric additively separable functions from above and below.
There is a clear formal connection14 to the celebrated Optimal Transport problem ([35], [11]),
specifically to its dual formulation as the Kantorovitch- Rubinstein Lemma:

max
Π:Πi=λi

{
∫
W(x)dΠ(x)} = min

gi:
∑
i gi(xi)≥W(x)

{
∑
i

∫
gi(xi)dλi}

13The proof is available upon request from the authors.
14We thank Fedor Sandomirskiy for pointing it out.
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where W(x) is the abstract transport cost, and Π the transportation protocol with fixed marginals
λi over the n coordinates of x.

The symmetry assumption is central to our approach: it restricts the marginals λi to be identical
and the function Π symmetric, which is not the case in a standard Monge transportation problem
or the matching models discussed in ([11]). We believe that the insights of that literature for fair
division problems can be very helpful.

a research program Evidently the concept of tight guarantees applies to many more common
property resources problems than those captured by our transferable utility model with modular
benefits or costs and mostly one dimensional types.

More general abstract descriptions of the resources map profiles of types to subsets of feasible
utility (or disutility) profiles. Horizontal equity confirms the prominent role of the unanimity
guarantee and the complexity of the menu of tight guarantees will increase.

The selection of a subset of pairs of tight guarantees will require additional context-free tools.
Even in our simple model we can choose g± so that (una, g±) minimises the largest gap over all
types, or, as in the otpimal transport problem, the expected gap w.r.t. some given distribution of
types.
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9 Appendix: missing proofs

9.1 Lemma 3.5

Step 1: upper-hemi-continuity We fix g ∈ G− and check that it is u.h.c.. If it is not, there is in X
some x1, a sequence {xt1} converging to x1, and some δ > 0 such that g(xt1) ≥ g(x1) + δ for all t.
Then we have, for any x−1 ∈ X [n−1]

W(xt1, x−1) ≥ g(xt1) +

n∑
i=2

g(xi) ≥ (g(x1) + δ) +

n∑
i=2

g(xi)

Taking the limit in t of W(xt1, x−1) and ignoring the middle term we see that we can increase g at
x1 without violating (4), a contradiction of our assumption g ∈ G−.
Step 2: statement ii) “If” is clear. For “only if”we fix g ∈ G− and show that it meets property
(7). For any x1 ∈ X define

δ(x1) = min
x−1∈X [n−1]

{W(x1, x−1)−
∑
[n]

g−(xi)}

and note that this minimum is achieved at some x−1 because the function x−1 →
∑n

i=2 g
−(xi) is

u.h.c. (step 1). Moreover δ(x1) is non negative.
If δ(x1) = 0 property (7) holds at x−1. If δ(x1) > 0 we can increase g at x1 to g(x1) + δ(x1),

everything else equal, to get a guarantee dominating g.

Step 3: lower-hemi-continuity We fix g ∈ G− and check that it is l.h.c.. By assumption W is
equi-continuous in its first variable, uniformly in the others:

∀η > 0,∃θ > 0, ∀x1, x
∗
1, x−1 : ||x1 − x∗1|| ≤ θ ⇒W(x1, x−1) ≤ W(x∗1, x−1) + η (26)

If g is not l.h.c. there is some x1 and {xt1} converging to x1 and δ > 0 s.t. g(xt1) ≤ g(x1) − δ
for all t. Pick θ for which (26) holds with η = 1

2δ and t large enough that ||x
t
1 − x1|| ≤ θ: then for

any x−1 we have

g(x1) +

n∑
i=2

g(xi) ≤ W(x1, x−1) ≤ W(xt1, x−1) +
1

2
δ

Replacing g(x1) with g(xt1) + δ gives g(xt1) +
∑n

i=2 g(xi) ≤ W(xt1, x−1) − 1
2δ for any x−1: this

contradicts the contact property (7) for xt1.
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9.2 Lemma 3.6

Proof Statement i) Fix ε = −, an arbitrary x̃1 ∈ X and write B(x̃1, r) for the closed ball of center
x̃1 and radius r. Use the notation ∆(x) =

∑n
1 una(xi)−W(x) to define the function

δ(x1) = max{∆(x1, x−1) : ∀i ≥ 2, xi ∈ B(x̃1, d(x1, x̃1))}
It is clearly continuous, non negative because ∆(x1, x−1) = 0 if xi = x1 for i ≥ 2, and δ(x̃1) = 0.

Define g = una − δ and check that g is the desired lower guarantee of W. At an arbitrary profile
x = (xi)

n
1 choose xi∗ s.t. d(x̃1, xi∗) is the largest: this implies δ(xi∗) ≥ ∆(x). Combining this with

δ(xi) ≥ 0 for i 6= i∗ gives
∑n

1 δ(xi) ≥ ∆(x) which, in turn, is the LH inequality in (4) for g. As g
is in G−, it is dominated by some g̃ in G−(Lemma 3.1) and g̃(x1) = una(x̃1) by inequality (6).

Statement ii) We assume that G− does not contain una and check that G− is not a singleton.
This assumption and the continuity of W imply that for an open set of profiles x ∈ X [n] we have∑

[n] una(xi) > W(x). Fix such an x and (by statement i)) pick for each i a tight guarantee gi
equal to una at xi: these n guarantees are not identical.

9.3 Some properties of modular functions

Submodularity is preserved by positive linear combinations, but not by the maximum or minimum
operation. For instance if n is odd, the median of profile x (Example 6.3) is the minimum of several
submodular functions but is neither sub- nor super-modular.

Whenever the partial derivative ∂iW(x) is defined in a neighborhood of x, supermodularity
implies that it is weakly increasing in xj for j 6= i. And if ∂iW(x) is strictly increasing in xj then
W is strictly supermodular. The isomorphic statements for submodularity replaces increasing by
decreasing.

Whenever ∂iW(x) is differentiable almost everywhere, the supermodularity property can be
written: for i, j ∈ [n], i 6= j, ∂ijW(x) ≥ 0 a. e. in x ∈ [L,H][n]. For submodularity reverse the
inequality.

A well known consequence of modularity is this: if (xi, xj)� (x′i, x
′
j) and the RH of (10) is an

equality, then in the interval [(xi, xj), (x
′
i, x
′
j)] the function (zi, zj) → W(zi, zj ;x−i,j) is separably

additive, and its cross derivative ∂ijW(·, ·;x−i,j) is identically zero. We say that W is locally i, j-
additive at the profile x if there is a rectangular neighborhood of (xi, xj) in which ∂ijW(·;x−i,j) is
zero.

A strictly modular function like W(x) = F (
∑

[n] xi) in section 5, with F strictly convex or
strictly concave, is not locally i, j-additive anywhere. But the submodular function W(x) =
maxi{xi} (Example 2.1) is locally i, j-additive whenever xi 6= xj , hence almost everywhere, al-
though it is clearly not globally i, j-additive!.

9.4 Proposition 4.3

We prove the statement for the serial↑ rule (14). By Lemma 3.3 it is enough to check the inequality
ginc(xi) ≤ ϕser↑i (x) ≤ una(xi) for all x.

Step 1. We show that ϕser↑i (x) increases (weakly) in all variables xj such that xj ≤ xi, i. e., for
j ≤ i− 1 . This generalises Lemma 1 in [20].

If W is differentiable in [L,H]n we check this by computing the derivative ∂kϕ
ser↑
i for k ≤ i− 1

in the LH of equation (14) and using the symmetry of W:

∂kϕ
ser↑
i (x) =

∂kW(x1, · · · , xi−1,
n−i+1
xi )

n− i+ 1
−∂kW(x1, · · · , xk−1,

n−k+1
xk )

n− k −
i−1∑

j=k+1

∂kW(x1, · · · , xj−1,
n−j+1
xi )

(n− j + 1)(n− j)
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Recall that the coordinates of x are weakly increasing. Because ∂kW increases weakly in xj , j 6=
k, the numerator of each negative fraction is not larger than that of the first fraction. The identity

1
n−i+1 = 1

n−k +
∑i−1

j=k+1
1

(n−j+1)(n−j) concludes the proof.
Without the differentiability assumption the only step that requires an additional argument is

the following consequence of supermodularity: as the coordinates of x increase weakly the term

W(x) − 1
n−k+1W(x1, · · · , xk−1,

n−k+1
xk ) increases weakly in xk for each k ≤ n − 1. We omit the

straightforward proof.

Step 2. By construction of ϕser↑ we have ϕser↑i (x) = ϕser↑i (x1, · · · , xi−1,
n−i+1
xi ) and by Step 1 it

is enough to check that ginc(xi) lower bounds ϕ
ser↑
i (x) at the profile (

i−1
L ,

n−i+1
xi ) while una upper

bounds it at (
n
xi). The latter follows from ϕser↑i (

n
xi) = una(xi). Applying (14) we see that the

desired lower bound reduces to

W(
n−1
L , xi) ≤

1

n− i+ 1
W(

i−1
L ,

n−i+1
xi ) +

n− i
n− i+ 1

W(
n
L)

⇐⇒ (n− i)(W(
n−1
L , xi)−W(

n
L)) ≤ W(

i−1
L ,

n−i+1
xi )−W(

n−1
L , xi)

Finally we apply (11) to successively lower bound W(
k
L,

n−k
xi )−W(

k+1
L ,

n−k−1
xi ) by W(

n−1
L , xi)−

W(
n
L) for k = (n− 2), · · · , (i− 1) and sum up these inequalities.

9.5 Proposition 5.1

Step 1 The function g`,h defined by (15) is a lower guarantee: g`,h ∈ G−.
We set Z = `L+ hH for easier reading. The feasibility inequality (4) applied to g`,h reads: for

x ∈ [L,H][n] ∑
[n]

F (xi + Z) ≤ F (xN ) + `F (Z + L) + hF (Z +H) (27)

We proceed by induction on n. There is nothing to prove if n = 2. For n = 3 we already know
that g2,0 and g0,2 are in G−; for g1,1 the inequality (27) is∑

[3]

F (xi + L+H) ≤ F (x123) + F (2L+H) + F (L+ 2H) (28)

Suppose x12 ≥ L+H: then the convexity of F implies

F (x3 + L+H)− F (2L+H) ≤ F (x123)− F (x12 + L)

Replacing F (x3 + L + H) in (28) by this upper bound and rearranging gives a more demanding
inequality

F (x1 + L+H) + F (x2 + L+H) ≤ F (x12 + L) + F (L+ 2H)

following again from the convexity of F .
So we are done if xij ≥ L + H for any pair i, j. Suppose next xij ≤ L + H for all three pairs.

Then we have for i = 1, 2, 3

x123, 2L+H ≤ xi + L+H ≤ L+ 2H

and the uniform distribution on the triple x123, 2L+H,L+ 2H is a mean-preserving spread of that
on (xi + L+H)i∈[3], which proves (28).
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For the inductive argument we fix n ≥ 4 and g`,h s. t. ` + h = n − 1 and ` ≥ 1. We assume
that (27) holds for n− 1 agent problems and prove it for (`, h).

Suppose xN�{n} ≥ Z for some agent labeled n without loss of generality. Then the convexity
of F implies

F (xn + Z)− F (Z + L) ≤ F (xN )− F (xN�{n} + L)

As before we replace F (xn+Z) by this upper bound and rearrange (27) to the more demanding∑
[n−1]

F (xi + Z) ≤ F (xN�{n} + L) + (`− 1)F (Z + L) + hF (Z +H)

which for the convex function F̃ (y) = F (y + L) and Z̃ = (`− 1)L+ hH is exactly (27) at x−n for
the guarantee g(`−1),h.

We are left with the case where xN�{i} ≤ Z for all i for which the different terms under F in
(27) are ranked as follows:

xN , Z + L ≤ xi + Z ≤ Z +H

and the distribution ( 1
n ,

`
n ,

h
n) on the support x, Z + L,Z + H is a mean-preserving spread of the

uniform distribution on the n inputs xi + Z. So g`,h meets (27).
If h ≥ 1 the symmetric proof starts by assuming xN�{n} ≤ Z and using the convexity inequality

F (xN�{n} +H)− F (xN ) ≤ F (Z +H)− F (xn + Z)

to obtain a more demanding inequality that is in fact (27) for g`,h−1 and the function F̂ (y) =
F (y +H).

Step 2 The guarantee g`,h is tight. We fix xi and compute

g`,h(xi) + `g`,h(L) + hg`,h(H) = F (xi + `L+ hH)

So the profile (xi,
`
L,

h
H) is in the contact set of g`,h at xi and by Lemma 3.5 we are done.

Statement ii) The derivative of the gap function is dF
dx (nxi) − dF

dx (xi + Z) which changes from
negative to positive at 1

n−1Z.
Statement iii) The equality g`,h(xi) = una(xi) is rearranged asi:

F (xi + Z) =
1

n
F (nxi) +

`

n
F (Z + L) +

h

n
F (Z +H))

This contradicts the strict convexity of F if `, h are both positive. If ` or h is zero we are dealing
with ginc or ginc with unanimous contact points at L and H respectively.

9.6 Lemma 6.1

Fix W defined by (19) and the equicontinuous functions wk. For “only if” we assume that W
is supermodular. Fix two agents i, j and a (n − 2)-profile x−ij ∈ [L,H][n]�i,j . For any 4-tuple
xi, yi, xj , yj such that xi > yi and xj > yj supermodularity means

W(xi, xj ;x−ij)−W(yi, xj ;x−ij) ≥ W(xi, yj ;x−ij)−W(yi, yj ;x−ij)

Suppose L < yi < xi < H and pick an arbitrary rank k, k ≤ n− 1: we can choose x−ij , xj and
yj s. t. in the profiles on the RH xi and yi are of rank k, while after increasing yj to xj they are
of rank k + 1 in the profiles on the LH. Then the inequality above reads

wk+1(xi)− wk+1(yi) ≥ wk(xi)− wk(yi)
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As xi, yi can be chosen arbitrary close to each other, this proves (20) at any interior point of [L,H]
where wk is differentiable (that is, a. e.).

For “if”we assume (20) and fix x−ij . For any xi, yj s. t. xi has rank k in (xi, yj ;x−ij) we have
∂iW(xi, yj ;x−ij) = dwk

dx (xi) (a. e.): if yj is below xi and jumps up to xj above xi then by (20)

∂iW(xi, xj ;x−ij) also increases (weakly) to
dwk+1
dx (xi). If xi is not isolated in the profile (xi, yj ;x−ij)

the same argument applies to the left and right derivatives of W in xi.

9.7 Theorem 6.1

We fix W given by (19) and supermodular, so dwk
dx (·) increases weakly with k.

Step 1. For any c the function gc defined by (21) is in G−. We saw in Definition 6.2 that it is
enough to show gc ∈ G−.

Because gc(xi) and W(xi; c) are continuous in xi, c it is enough to prove the LH inequality (4)
for strictly decreasing sequences {x`}n1 and {ck}n−1

1 such that H > c1 and cn−1 > L and moreover
x` 6= ck for all `, k. These assumptions hold for all the sequences x, c below.

Step 1.1 Call the profile of types x∗ regular if

x∗1 > c1 > x∗2 > c2 > · · · > ck−1 > x∗k > ck > · · · > cn−1 > x∗n (29)

then compute

n∑
1

gc(x
∗
k) =

n∑
1

W(x∗k, c)−
n−1∑

1

W(ck, c) =
n−1∑

1

(wk(x
∗
k)− wk(ck)) +W(x∗n, c) =W(x∗)

so that x∗ is a contact profile of gc.

Step 1.2 For any three sequences x, x′ and c we say that x′ is reached from x by an elementary
jump up above ck if there is some ` such that x−` = x′−`; ck is adjacent to x` in x from above and
adjacent to x′` in x

′ from below. In other words: x′` > ck > x` and there is no other element of x or
c between x` and x′`. The definition of an elementary jump down below ck is exactly symmetrical.

We claim that for any sequence x̃ we can find a regular profile x∗ and a path (a sequence of
sequences) σ = {x̃ = x1, · · · , xt, · · · , xT = x∗} such that
1) each step from xt to xt+1 is an elementary jump up or down of some xt` over some ck
2) ` ≤ k if xt` jumps up above ck, and ` ≥ k + 1 if xt` jumps down below ck.

The proof by induction on n starts by distinguishing
Case 1: x̃1 > c1. Then x̃1 never moves and x̃1 = x∗1; if x̃2, · · · , x̃` are above c1 then ` − 1

successive elementary jumps down of these below c1 defines the first `−1 steps of the desired path;
continuing until there are none, it remains to construct a path from the shorter sequence x̃−1 into
a one regular w. r. t. the sequence c−1 by invoking the inductive assumption.

Case 2: c1 > x̃1. Then the successive elementary jumps up of x̃1 over the closest ck then
ck−1, · · · , c1 define the first k steps of the desired path until xk+1 = x∗1 that never moves again;
then we proceed with the shorter sequences x̃−1 and c−1 by the inductive assumption.

Step 1.3 We pick an arbitrary profile x̃ and construct a sequence σ from x̃ to some regular x∗,
and check that in each step of the sequence the sum

∑n
1 gc(x`) − W(x) cannot decrease, which

together with Step 1.1 concludes the proof that gc ∈ G−. This sum develops as

B︷ ︸︸ ︷
(

n∑
`=1

W(x`, c))−
C︷ ︸︸ ︷
W(x)−

D︷ ︸︸ ︷
n−1∑
k=1

W(ck, c)
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Consider a jump up of xt` above ck: x
t+1
` > ck > xt`. The net changes to the three terms in the

sum are

∆B = wk(x
t+1
` )− wk+1(xt`) + wk+1(ck)− wk(ck)

∆C = w`(x
t+1
` )− w`(xt`) ; ∆D = 0

With the notation ∆f(a→ b) = f(b)− f(a) and some rearranging this gives

∆B −∆C + ∆D = ∆(wk − w`)(ck → xt+1
` ) + ∆(wk+1 − w`)(xt` → ck)

where both final ∆ terms are non negative because ` ≤ k and by (20) wk − w` and wk+1 − w`
increase weakly.

The proof for a jump down step is quite similar by computing the variation of
∑n

1 gc(x`)−W(x)
to be ∆(w` − wk)(ck → xt`) + ∆(w` − wk+1)(xt+1

` → ck) and recalling that in this case we have
` ≥ k + 1.

Step 2 A tight guarantee g ∈ G− takes the form gc in (21).
Recall the notation C(g) for the set of contact profiles of g defined by (7). For each k ∈ [n] its

projection Ck(g) is the set of those xi ∈ [L,H] appearing in some profile x ∈ C(g) with the rank
k; it is closed because C(g) is closed and we call its lower bound ck. The sequence {ck} decreases
weakly because in a contact profile where ck is k-th the type xk+1 ranked k+ 1 is weakly below ck.
And cn = L because cn is in some contact profile of g.

Check first that C1(g) = [c1, H] with the help of Lemma 3.9. For each x1 ∈ [c1, H[ where g
is differentiable and x1 appears with rank k in some contact profile we have

dg
dx(x1) = dwk

dx (x1) ≥
dw1
dx (x1) because W is supermodular. This implies g(x1) − g(c1) ≥ w1(x1) − w1(c1) everywhere in

[c1, H].
Pick a profile (c1, x−1) ∈ C(g) where c1 is ranked first and combine the latter inequality with

this contact equation:

g(c1)− w1(c1) =

n∑
2

(wk(xk)− g(xk)) ≤ g(x1)− w1(x1)

The inequality above must be an equality because g is a lower guarantee therefore dg
dx(x1) =

dw1
dx (x1) a.e. in [c1, H] and [c1, H] = C1(g).
We repeat this argument for x2 ∈ [c2, c1[. In any of its contact profiles its rank is at least

2 by definition of c1, so when g is differentiable at x2 we have
dg
dx(x2) = dwk

dx (x2) ≤ dw2
dx (x2) by

submodularity of W. Then g(x2) ≤ g(c2) + w2(x2) − w2(c2) holds in [c2, c1] and by plugging as
above this inequality at a contact profile where c2 is ranked second, we see that it is an equality
and conclude that first, dgdx(x2) = dw2

dx (x2) a.e. in [c2, c1] and second, [c2, c1] ⊆ C2(g).15

The clear induction argument gives dg
dx(xk) = dwk

dx (xk) a.e. in [ck, ck−1]; together with the
continuity of g it implies that g is entirely determined by the value g(L). But for c = (c1, · · · , cn−1)
the tight lower guarantee gc ((21)) meets precisely the same differential system, therefore g and gc
differ by a constant; if they don’t coincide g is either not a lower guarantee or not tight.

15Note that C2(g) can extend beyond c1 but this can only happen if dw2dx
= dw1

dx
in the overlap interval. To see this

compare two contact profiles x and y such that x1 ≥ x2 > y1 ≥ y2 and use the LH of (4) at the two profiles where
x2 and y2 have been swapped plus supermodularity of W to deduce that they are contact profiles as well.
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9.8 Example 6.3

We can without loss assume that F is the identity because the change of variable yi = F (xi) reaches
that problem (Lemma 3.7). The proof resembles that of Proposition 2.1.

Fix a tight upper guarantee g+ ∈ G+
k and recall that g+ is weakly increasing (Lemma 3.4).

Define p = ng+(L): from una(xi) = 1
nxi and inequality (6) (Lemma 3.2) we get p ≥ L. Observe

next that gH(xi) ≡ 1
nH is in G+

k (in fact also in G+
k as we show below); if p > H then g+ is

everywhere larger than gH , a contradiction. So p ∈ [L,H].

Apply now the feasibility inequality (4) to g+ at the profile (
n−k
L ,

k
xi):

n− k
n

p+ kg+(xi) ≥ xi

If k = n this gives g+(xi) ≥ una(xi): as una ∈ g+ we conclude g+ = una. For k ≤ n − 1 we
combine the inequality above with g+(xi) ≥ 1

np and obtain

g+(xi) ≥ max{ 1

n
p,

1

k
(xi −

n− k
n

p)} =
1

n
p+

1

k
(xi − p)+

It remains to check that the function on the right, which we write g+
p , is itself an upper guarantee.

Pick an arbitrary profile x ∈ [L,H][n] and suppose that p is s. t. x` ≥ p ≥ x`+1. We must show

∑
[n]

g+
p (xi) = p+

1

k
((
∑̀
t=1

xt)− `p) ≥ xk

If p ≥ xk we are done because the term in parenthesis is non negative. Assume now p < xk so
that xk ≥ · · · ≥ x` ≥ p ≥ x`+1, then note that (

∑`
t=1 x

t)− `p ≥ k(xk − p) and we are done.
The proof that for k ≥ 2 the set G−k is also parametrised by q ∈ [L,H] as

g−p (xi) ≥
1

n
q +

1

n− k + 1
(xi − q)−

and for k = 1 contains only una, is entirely similar.

9.9 Lemma 7.2

Statement i) is clear because W is symmetric. In Statement ii) upper-hemi-continuity of ϕ is clear
because W and g are both continous (step 1 in the proof of Lemma 3.5 above).

To check that ϕ is convex valued we fix (x1, x2), (x1, x
′
2) ∈ Γ(ϕ) and z s. t. x2 < z < x′2, and

check that Γ(ϕ) contains (x1, z) too. Pick some w ∈ ϕ(z): if w > x1 we see that Γ(ϕ) contains
(x1, x2) and (w, z) s.t. (x1, x2)� (w, z) which is a contradiction by Lemma 7.1. If w < x1 we use
instead (w, z) and (x1, x

′
2) to reach a similar contradiction, and we conclude w = x1.

The proof below that ϕ is single-valued a. e. will complete that of statement ii).

Statement iii) If x1 < x′1 in X and ϕ−(x1) < ϕ+(x′1) we again contradict the strict super-
modularity of W (Lemma 7.1) . So x1 < x′1 =⇒ ϕ−(x1) ≥ ϕ+(x′1) and ϕ− and ϕ+ are weakly
decreasing.

If ϕ(x1) is not a singleton, ϕ+(x1) > ϕ−(x1), then ϕ+ jumps down at x1; a weakly decreasing
function can only do this a countable number of times. That the u.h.c. closure of ϕ+ contains
[ϕ−(x1), ϕ+(x1)] follows from ϕ−(x1) ≥ ϕ+(x1 + δ) for any δ > 0.
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Statement iv) If ϕ(L) does not contain H we pick some x1 in ϕ(H): by statement i) ϕ(x1)
contains H therefore x1 > L; we reach a contradiction again from Lemma 7.1 because Γ(ϕ) contains
(L,ϕ+(L)) and the strictly larger (x1, H).

Statement v) Kakutani’s theorem implies that at least one fixed point exists. If Γ(ϕ) contains
both (a, a) and (b, b) we contradicts again Lemma 7.1. Check finally that the inequalities ϕ−(a) <
a < ϕ+(a) are not compatible. Pick δ > 0 s.t. ϕ(a) contains a − δ and a + δ: then Γ(ϕ) contains
(a, a+ δ) and (a− δ, a) (by symmetry) and we invoke Lemma 7.1 again.

9.10 Theorem 7.1

Step 0: the integral in (25) is well defined.
For any correspondence ϕ as in Lemma 7.2 the integral

∫ x1
a ∂1W(t, ϕ(t))dt is the value of∫ x1

a ∂1W(t, f(t))dt for any single-valued selection f of ϕ: this is independent of the choice of f
because ϕ is multi-valued only at a countable number of points and every single-valued selection
of ϕ(x1) is a measurable function.

Statement ii) Fix g ∈ G− and its contact correspondence ϕ. The functionW is uniformly Lipschitz
in [L,H]2 so by Lemma 3.8 g is Lipschitz as well, hence differentiable a. e.. The derivative dg

dx is
given by property (9) in Lemma 3.9: given x1 for any x2 ∈ ϕ(x1) we have dg

dx(x1) = ∂1W(x1, x2),
therefore we can write the RH as ∂1W(x1, ϕ(x1)) without specifying a particular selection of ϕ(x1).

Note that g(a) = una(a) because (a, a) ∈ Γ(ϕ). Now integrating the differential equation above
with this initial condition at a gives the desired representation (25).

Statement i)
Step 1 Lemma 7.2 implies that Γ(ϕ) is a one-dimensional line connecting (L,H) and (H,L) that we
can parametrise by a smooth mapping s→ (ξ1(s), ξ2(s)) from [0, 1] into [L,H]2 s.t. ξ1(·) increases
weakly from L to H and ξ2(·) decreases weakly from H to L. We can also choose this mapping so
that ξ1(1

2) = ξ2(1
2) = a, the fixed point of ϕ.16

We fix an arbitrary selection γ of ϕ, an arbitrary x1 in [L,H], and check the identity∫ x1

a
∂1W(t, ϕ(t))dt+

∫ γ(x1)

a
∂1W(t, ϕ(t))dt =W(x1, γ(x1))−W(a, a) (30)

We change the variable t to s by t = ξ1(s) in the former and by t = ξ2(s) in the latter. Next s
is the parameter at which (ξ1(s), ξ2(s)) = (x1, γ(x1)) and we rewrite the LH above as∫ s

1
2

∂1W(ξ1(s), ξ2(s))
∂ξ1

∂s
(s)ds+

∫ s

1
2

∂1W(ξ2(s), ξ1(s))
∂ξ2

∂s
(s)ds

where in each term ∂1W(t, ϕ(t)) we can select a proper selection of the (possible) interval because
(ξ1(s), ξ2(s)) ∈ Γ(ϕ). As W(x1, x2) is symmetric in x1, x2, we can replace the second integral by∫ s
1
2
∂2W(ξ1(s), ξ2(s))∂ξ2∂s (s)ds and conclude that the sum is precisely

W(ξ1(s), ξ2(s))−W(ξ1(
1

2
), ξ2(

1

2
)) =W(x1, γ(x1))−W(a, a)

Step 2 We show that (25) defines a bona fide guarantee g: g(x1) + g(x2) ≤ W(x1, x2) for x1, x2 ∈
[L,H].

16 If a is 0,or 1 we check that (25) defines the two canonical incremental guarantees in Proposition 4.2.
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The identity (30) amounts to g(x1) + g(γ(x1)) = W(x1, γ(x1)) for all x1. If we prove that
g ∈ G− this will imply it is tight. Compute

g(x1) + g(x2) =W(x1, γ(x1)) + g(x2)− g(γ(x1)) =W(x1, γ(x1)) +

∫ x2

γ(x1)
∂1W(t, ϕ(t))dt

We are left to show ∫ x2

γ(x1)
∂1W(t, ϕ(t))dt ≤ W(x1, x2)−W(x1, γ(x1)) (31)

We assume without loss x1 ≤ x2 and distinguish several cases by the relative positions of a and
x1, x2 .

Case 1: a ≤ x1 ≤ x2, so that γ(x1) ≤ a. For every t ≥ γ(x1) property iii) in Lemma
7.2 implies ϕ+(t) ≤ ϕ−(γ(x1)) and ϕ(γ(x1)) contains x1: therefore submodularity of W implies
∂1W(t, ϕ(t)) ≤ ∂1W(t, x1) and∫ x2

γ(x1)
∂1W(t, ϕ(t))dt ≤

∫ x2

γ(x1)
∂1W(t, x1)dt =W(x2, x1)−W(γ(x1), x1)

Case 2: x1 ≤ a ≤ γ(x1) ≤ x2. Similarly for t ≥ γ(x1) we have ϕ+(t) ≤ ϕ−(γ(x1)) and conclude
as in Case 1.

Case 3: x1 ≤ x2 ≤ a, so that γ(x1) ≥ a. For all t ≤ γ(x1) we have ϕ−(t) ≥ ϕ+(γ(x1)) and
ϕ(γ(x1)) contains x1: now submodularity of W gives ∂1W(t, z) ≥ ∂1W(t, x2) for z between x2 and
γ(x1) and the desired inequality because the integral in (31) goes from high to low.

Case 4: x1 ≤ a ≤ x2 ≤ γ(x1). Same argument as in Case 3.
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