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Federated Learning (FL): distributed learning paradigm
that collaboratively trains a global model across clients
without data exchange.

In many applications where quick decisions are required,
or when a large number of alternatives has to be tested,
the predictions have to be performed in near real-time.

Meta-Learning: accelerates model adaptation to arbitrary
labels by allowing fine-tuning over small datasets when
faced with previously unseen tasks.
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Meta-Learning in FL relies on ‘perfect setups’,
which are challenging to implement in real-world

applications.

» Classification tasks share exactly the same set

Introduction

of labels Zand label distribution as those used in

training meta-models.

»Not possible to deal with any arbitrary out-of-

distribution classification requests.

» Labels are equally distributed among clients.
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Therefore, they rely on a single, global Federated Meta- Learning (FML).
FML works well for homogeneous data and tasks, adapting to heterogeneous data and task

distribution is challenging.
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< Data & Class Labels are heterogeneous; due to All Classes
shifts in feature, label, and concept distributions.

% A client may have only a few classes compared to l ‘
total number of classes required for a specific task. &

Cor person birels robots  dogs cats

% Among the available classes on a client, there may
be class imbalance.

Clientl Client 2

% Such disparities in labels across clients impede the '
convergence of classifiers and degrading their
performance.

Car person  birds Car dogs
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' Road surface defect
On-demand classification task: requests training  Maintenance tasks(L") detection model on (')

. .. . , Set of clients 1 Set of clients 2
of a classifier over distributed clients’ data, etorchients
where data are labelled from a set T c L.

Block crack Gravel road

Asphalt road

Transverse crack

ThissetT canbe: T c L'orT c L.

Concrete road

Pothole

Note: in traditional FML and FL, we obtain the =
v

trivial case 77 = L.

A single, global FML model proves to be inefficient and impractical to accommodate (i) any
arbitrary classification tasks and (ii) out-of-distribution labels across clients.
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We introduce a Cluster-based & Label-aware FML framework (CL-FML) that addresses such
challenges, departing from standard FL and FML paradigms.

Idea: CL-FML gathers clients together based on label shifting mitigating label imbalance per task.

Main goals:
v Study the cases of training more than one (reusable) meta- model tailored to available labels

L, < L of a cluster of clients Cy,.

v" Provide compact sized meta-models stored on clients temporarily, to be reused for future tasks

v' CL-FML not only adapts meta-models solely to tasks with exactly the same distribution; it copes
with sharing meta-models among clusters to further fine-tune in case of out of distribution tasks.
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Centralized Federated Learning (CFL):

A distributed learning system with N clients
N=nq,n,,..,ny. Let D; be the local dataset of a client n; €
N.In CFL, given a subset of ' < IV clients N'' ¢ V', the
local loss for each n; € N’ is:

1
RO == > 30,0,

1D _
(x,y)ESDl

The global loss for selected clients V' is:

RO =

n;eN’

D;

p; Ri(6) ,where p; = S D
njEN’ ]

Centralized server

Clients

nq

Decentralized Federated Learning (DFL):

In DFL each client n; communicates only with its neighbors ; ¢ v/
of clients with connections between them. Hence, there is no need
for a centralized server to aggregate the locally updated models as
in CFL. At round t, each client n; first aggregates the models
received from its neighbors n; € IV,

ot = Z ot

L
n]-ENiU{ni}
Then, trains local model 6 using local data ;.

0;"" = 6f —nVR;(6))
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 Each client n; collects local labelled data D; = {X; x ¥; ~P;: X; € R%; Y; € £} from an
unknown joint probability distribution ?;
o L={¥,..,2y}allthe available labels across all clients in the network.

For any pair of clients (n;,n;) with n; # n;, the joint probability distributions can be
either similar (P; = ;) or dissimilar (P; # 7).

[ Clients have data with some labels from £ and, in real cases, not all of them. ]

Note: all labels are not known to all clients in advance.
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* (Label-aware Client Clustering)

To make the clients aware of the available labels, we introduce a label-aware distributed
mechanism.

* We rely on sharing only label distribution among clients to approximate a prior label
distribution per cluster.

Ring-based Label Dissemination:
Each client n; disseminates only its local labels £; € L to neighbours.

In a ring topology, each client n; sends a message to its neighbour n; and receives a message
from another neighbour ;.

At round t, client n; expands its local label set £; with the labels received from
ny, i.e., L; « L; U L; and sends L; to n;.
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Label-aware Clustering:

Based on the initial label set £; and global label set L, each client n; represents its available labels
with a probability P; = [py, ..., ]| € [0,1]" .

Given L; and L, multi-hot encoding z = [z, ...,zy] € [0,1]1" has z, = 1if z, € L;; z, =0,
otherwise.

Leader n; initiates a Minimum Spanning Tree (MST) to incrementally gather all probability
label vectors.

{P;}N_,, will be used for clustering the clients into K < V.

v’ Leader groups nodes’ label distributions into K clusters. Each cluster is represented by the cluster
label distribution wj, = [wy4, ..., Wi ]| associated with the labels #; ..., €y, respectively.

v" Cluster label distributions w, are incrementally updated upon receiving a client’s label
distribution P;.
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Objective: train a tailored decentralized meta-model f}, for each cluster C, k € [K], capable of fast and
flexible adaptation to on-demand tasks with varying label sets A = {73 ,7;, ...}. This is achieved via fine-
tuning using selected samples from clients belonging to each cluster Cy.

« DM is used to train the cluster’'s meta- model f. It can be

imbalanced. CDi
* f serves as the starting point to learn a generic representation qugry set {
of clients’ data in Ci, to use with future tasks’ labels 7; € A D €D

assigned to Cy.

Q L meta-training set <
- D refers to labeled-balanced samples eliminating class DM .
l l

imbalances in the fine-tune stage of f.

dlno¥ =9
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Within cluster Cy: client n; € Cy locally updates 6, ; along with neighbors 6, ; , n; € \V; deriving a new
local meta-model from its meta-training set ® over local epochs E,, using SGD.

Duringround t € {1, ..., T}, n; aggregates its neighbors local meta-models as:

_ DM|

t _ t _ | i

Ori = E Wij,j , w; = 5 |DM|
n;EN ; njENj J

Then, computes the gradient of the loss, VR(é,ﬁ,i), updating the local meta-model as:

0i5t < 0, —nVR(6y;)

The cluster-based meta-model 85 = 6y ;, V n; is then passed to all clients in the cluster.
This meta-model locally maintained on each client serves as an initial model.
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Based on the previous step, each client n; is allocated to a cluster and is equipped
with a meta-model 8y, .

Consider a new incoming task 7 requesting the training of a classifier over distributed
clients’ data with labels T = {¢7} € L.

The task assigned initially to a group C, of clients that have the majority of the labels
requested in set " based on the closest group cluster distribution.

k = argmingegH (W, q)

q = {9} menm 1S the probability label distribution of the task’s requested labels T.
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We distinguish two cases:

Case |. If T € L, then, group Cy is the most suitable to directly handle this task involving
its clients in the training.

Case ll. If T o £, then:

v" The group Cy initiates a process for handling the labels in T n L.

v" Involve clients from other clusters {C,,}X,_,{C,} capable of handling the rest of the
labels in 7= T\ L.

v' Keep engaging clusters until all their labels are included in 7.

v Rank these clusters based on their label contribution to task 7 and engage the
minimum number m < K of those cluster whose U} {£,} S T.
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Task-tailored Distributed Meta-model Learning

After selecting the most suitable cluster ¢* (Case I) or most suitable clusters ¢ (Case Il), the
associated clients are engaged in the distributed training of the classifier as the following.

v' These clients use their cluster-based meta-models f}, from cluster € € €} to start off the training
process.

Note: Even though a substantial amount of relevant labeled-data may be available for ¢*or (C3),
there might still be a need for augmentation of data in group €, € € with labels 7/L,, which are
not present in k-th cluster’s client data (missing labels).

{ This facilitates the fine-tuning of the requested task-tailored meta model. ]
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Task-tailored Distributed Meta-model Learning
(Data augmentation)

For each suitable cluster ¢, € C}, the corresponding clients locally identify their missing labels required
per task T.

% These clients generate augmented data labelled by the missing labels using a MixUp meta-model g,
from clients in cluster €, € C}, ¢ # k, for which these labels are not missing.

% MixUp g, generates labelled samples (x,y) conditioned on the labels y locally on a client n; € C;
such that {(x, y): y € T\L,}. Clients within the cluster individually use MixUp models.
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Fine-tuning

« As aresult: aclientn; € €, can now construct its query set DiQ = {(x,y):y € T\L;} including
() The actual data labelled with the requested task labels.
(i) The augmented data labelled with the associated missing labels.
Subsequently, the task-tailored meta-model notated as 87" is fine-tuned based on the query sets of
the clients in the suitable clusters C, € C} after T' fine-tuning rounds.

\_ J

The local update of the distributed task-tailored meta-model 8% ; at fine-tuning round at client n; from
suitable cluster C, € C; uses batch SGD over the query set DiQ IS given by:

Oi < Oy —VR(B):)
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Experimental Evaluation

Experimental Set-up:

- Images: MNIST, EMNIST, MEDMNIST, Fashion-MNIST, and CIFAR-100; classes |C| = (10, 47,
6, 10, 100), respectively.

- Clients: |V| €{50, 100, 200,100}.

- On-demand tasks: {600, 600, 500, 500}.

- Fine-tuning data: 1 — «, a €{0.5, 0.6, 0.7}.

Baselines

- Baseline 1: The decentralized FL (DFedAvQ).

- Baseline 2. Cluster-based DFedAvg (C-DFedAvg).
- Baseline 3: Group-based FML (G-FML).

Note: CL-FML and G-FML, require fine-tuning for their meta-models over relatively small
amount of data
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Experimental Results

Comparison assessment with baselines (Meta-models)

MNIST
Metric C-DFedAvg DFedAvg G-FML(0.7) G-FML(0.6) G-FML(0.5) CL-FML(0.7) CL-FML(0.6) CL-FML(0.5)
Training Rounds 10 16 9 10 10 3 4 3
Actual Data Access (%) 100 100 30 40 50 30 40 50
Augmented Data Generation (%) 48.83 61.14 30.588 20.19 18.35 24.4 19.53 14.65
Accuracy (%) / F score 96.80/0.96 94.39/0.93 95.19/0.94 93.12/0.93 94.84/0.94 96.63/0.96 96.45/0.96 96.36/0.97
Fashion-MNIST
Metric C-DFedAvg DFedAvg G-FML(0.7) G-FML(©0.6) G-FML(0.5) CL-FML(0.7) CL-FML(0.6) CL-FML(0.5)
Training Rounds 15 20 10 10 9 6 5 6
Actual Data Access (%) 100 100 30 40 50 30 40 50
Augmented Data Generation (%) 38.46 47.82 14.34 19.12 23.91 11.53 15.38 19.23
Accuracy (%) / I score 86.75/0.88 84.03/0.83 81.98/0.81 82.26/0.82 85.07/0.84 86.03/0.86 86.385/0.86 85.15/0.85
EMNIST
Metric C-DFedAvg DFedAvg G-FML(0.7) G-FML(0.6) G-FML(0.5) CL-FML(0.7) CL-FML(0.6) CL-FML(0.5)
Training Rounds 15 25 20 18 20 7 6 6
Real Data Access (%) 100 100 30 40 50 30 40 50
Augmented Data Generation (%) 33.185 64 14.34 19.12 2391 11.53 15.38 19.23
Accuracy (%) / F, score 90.85/0.89 89.16/0.88 88.15/0.87 88.22/0.881 88.71/0.88 89.53/0.89 91.29/0.91 89.72/0.89
CIFAR-100
Metric C-DFedAvg DFedAvg G-FML(0.7) G-FML(0.6) G-FML(0.5) CL-FML(0.7) CL-FML(0.6) CL-FML(0.5)
Training Rounds 40 85 25 24 27 12 10 14
Real Data Access (%) 100 100 30 40 50 30 40 50
Augmented Data Generation (%) 36.78 68.2 24.33 27.73 29.83 18.67 22.34 24.57

Accuracy (%) / I score 71.40/0.71 67.59/0.67 67.53/0.67 68.28/0.67 68.67/0.68 70.89/0.74 71.18/0.74 71.15/0.73




Unaversity
of Glasgow

Experimental Results

School of Computing Science

Knowledge & Data

Engineering Systems

Multiple meta-models’ top-1 accuracy (%) of CL-FML against global meta-model (G-
FML) vs. convergence (samples of two groups).

a: MNIST (C1)

b: MNIST (C2)

c: Fashion_MNIST (C1)

d: Fashion_MNIST (C2)

e: EMNIST (C1)

f: EMNIST (C2)
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IMPACT OF OVERLAPPING/SIMILARITY BETWEEN TASKS & CLUSTERS ON FINE-TUNED MODELS

PERFORMANCE.
MNIST
P(T|simn)  Similarity C-DFedAvg DFedAvg G-FML(0.7) G-FML(0.6) G-FML(0.5) CL-FML(0.7) CL-FML(0.6) CL-FML(0.5)
20% 80% 98.96% 98.65% 99.29% 99.10 99.34% 98.96% 99.55% 99.24%
30% 67% 97.11% 96.074 95.48% 95.88% 96.07% 96.01% 96.61% 96.81%
30% 50% 96.91% 96.56 97.13% 96.73% 96.91% 97.86% 97.51% 97.11%
20% 30% 97.01% 96.01 95.56% 96.55% 96.48% 97.01% 97.34% 97.23%

Fashion-MNIST
P(T|sim) Similarity C-DFedAvg DFedAvg G-FML(0.7) G-FML(0.6) G-FML(0.5) CL-FML(0.7) CL-FML(0.6) CL-FML(0.5)

20% 80% 91.96% 91.14% 87.80% 88.89% 90.03% 89.40% 92.11% 90.79%
30% 70% 90.04% 85.15% 86.13% 87.96% 88.77% 87.52% 89.36% 90.94%
30% 50% 86.48% 77.71% 71.18% 72.22% 83.52% 86.80% 86.92% 86.17%
20% 25% 79.78% 75.56% 75.77% 79.65% 79.55% 80.58% 79.55% 78.94%

EMNIST

P(T|sim) Similarity C-DFedAvg DFedAvg G-FML(0.7) G-FML(0.6) G-FML(0.5) CL-FML(0.7) CL-FML(0.6) CL-FML(0.5)
20% 80% 93.27% 89.38% 92.21% 93.25% 92.83% 93.81% 92.15% 93.35%
30% 70% 90.18% 90.41% 91.35% 88.80% 88.50% 88.59% 91.71% 89.61%
30% 50% 89.25% 89.20% 85.70 % 86.75% 87.33% 86.34% 86.47% 89.56%
20% 30% 79.64% 87.65% 83.34% 83.84% 85.19% 86.38% 84.84% 83.84%

CIFAR-100

P(T|sim) Similarity C-DFedAvg DFedAvg G-FML(0.7) G-FML(0.6) G-FML(0.5) CL-FML@©0.7) CL-FML(0.6) CL-FML(0.5)
20% 80% 72.84% 65.60% 66.40% 67.60% 61.77% 71.20% 72.00% 7.82%
30% 70% 69.92% 67.60% 68.20% 67.86% 68.50% 69.54% 70.01% 70.07%
30% 50% 74.84% 71.13% 68.91 % 70.38% 70.67% 74.56% 73.78% 73.09%

20% 30% 68.43% 66.05% 66.63% 67.31% 67.771% 68.28% 68.95% 68.54%
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Conclusions

We introduced the CL-FML framework for classification tasks with label-shifting
across distributed clients.

CL-FML leverages decentralized federated meta-learning via a novel label-driven
client clustering, where multiple cluster-based meta-learning models deal with any
arbitrary classification tasks.

CL-FML leverages data augmentation to train on- demand out-of-distribution
classifier training.

Comprehensive experiments against baselines showcase the superiority of CL-
FML.
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Thank you!

Tahani Aladwani
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