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Abstract

The U.S. housing market exhibits an unusually high degree of volatility, which
challenges traditional models that rely on large preference shocks to explain such
fluctuations. In this paper, I argue that the expectations channel plays a key role
in driving this volatility. I incorporate Diagnostic Expectations (DE) within a
Two-Agent New Keynesian (TANK) model featuring housing and banking sectors.
Using Sequential Monte Carlo methods to estimate the model, I find that DE
reduce the size of the housing preference shock by more than one-third relative to
Rational Expectations, while reproducing the housing market fluctuations. This
result holds whether agents’ imperfect memory is based on recent or three-year
past experiences. When the expectations channel is removed -i.e., when agents are
rational- the model fails to generate the high volatility in house prices observed
in the data. These findings highlight the importance of the expectation formation
process in explaining a substantial part of unmodeled disturbances affecting the
housing market and in shaping policy responses.
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“The mind of every man, in a longer or shorter time, returns to its natural and usual
state of tranquillity. In prosperity, after a certain time, it falls back to that state; in

adversity, after a certain time, it rises up to it” (Smith, 1759, p. 172)

1 Introduction

During the period spanning from the mid-eighties to the aftermath of the Great Financial
Crisis, the U.S. housing market has been defined by its high volatility (Piazzesi & Schnei-
der, 2016). Quantities and prices growth rates are three and six times more volatile than
GDP, as seen in Figure 1, with standard deviations of 1.723% and 3.452%, respectively.
Understanding what drives these dynamics is relevant, given the valuable information
that the housing market provides about ongoing changes in economic activity (Chahrour
& Gaballo, 2021) and the importance of housing in households’ decisions and wealth
(Davis & Heathcote, 2005).

Traditional models typically attribute pronounced house price movements to housing
preference shocks, but this approach limits the insights offered for policy analysis by
overlooking expectation-driven dynamics. For instance, Gelain, Lansing, and Mendicino
(2012) suggests that agents’ expectations can significantly influence monetary policy re-
sponses. Moreover, empirical studies challenge the rationality assumption in the housing
market, indicating that expectations are the source of the pronounced fluctuations in
the sector. The evidence reveals that housing market expectations strongly track re-
cent observed house price changes (Kuchler, Piazzesi, & Stroebel, 2023; Adam, Pfäuti,
& Reinelt, 2024), with price expectations showing short-run momentum (Gohl, Haan,
Michelsen, & Weinhardt, 2024). Additionally, De Stefani (2021) finds that the risk of a
downturn after a long period of growth in house prices is underestimated by consumers,
generating predictable errors. Together, these findings position non-rational expectations
as a promising explanation for the higher volatility in housing markets, while suggesting
potentially different monetary and macro-prudential policy responses.

In this context, I develop a two-agent New Keynesian (TANK) model that incorporates
a housing market inspired by Iacoviello and Neri (2010), a banking sector following the
framework in Gertler and Karadi (2011), and diagnostic expectations (DE) as proposed
by Bordalo, Gennaioli, and Shleifer (2018).1 Diagnostic agents form beliefs influenced by
recent (or not-so-recent) trends. For example, a history of rising (falling) house prices tend
to make future prices following the same trend more prominent in diagnostic agents mind,
but when these projections don’t materialise, DE creates feedback loops that amplify

1The authors build DE on Kahneman and Tversky (1972) concept of representativeness. This de-
scribes a judgemental process where the most distinguished characteristic of an event plays the main role
in a human’s mind when assigning probabilities.
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optimism or pessimism. By introducing DE into this model, I aim to address the observed
volatility in the housing market without relying on large shocks. The main contribution
of this paper, therefore, is to show that DE can account for approximately thirty to fifty
percent of this volatility, offering a more robust alternative to traditional explanations
that attribute unexplained demand changes to housing preference shocks. This result
has significant implications for policy, as understanding the dynamics of expectations-
driven volatility in the housing market enables policymakers to better anticipate risks of
speculative bubbles and refine interventions to address potential financial instability and
resource misallocation.

Figure 1: Real GDP, real house price and real residential investment in percentage change.

Building on this, I also explore an alternative structure for the reference group used by
agents forming DE. Instead of relying solely on the immediate past, I extend the frame-
work to examine how more distant memories might affect and shape agents’ background
context. Following Bordalo et al. (2018), I introduce a slow-moving reference by defining
representativeness as a mixture of current and past likelihood ratios. This approach dif-
fers from Bianchi, Ilut, and Saijo (2024), as they consider a weighted average of lagged
expectations as comparison group. To the best of my knowledge, this is the first at-
tempt to incorporate and study DE with a slow-moving structure as reference in a model
featuring heterogeneous agents, a housing sector, and a banking sector. Under this set
up, I derive that diagnostic agents using a slow moving reference group misperceive the
shock as an ARMA(1,S) process, where S represents the length of the periods used as the
reference group.

I calibrate and estimate each model for the U.S. economy using recent advancements in
macroeconomic model estimation by Herbst and Schorfheide (2014). The results supports
the role of DE in driving housing market dynamics in the U.S. Compared to traditional
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RE models, DE reduces the standard deviation of the housing preference shock by at
least one-third, suggesting DE could be a comprehensive alternative to the “catchall of
all the unmodeled disturbances that can affect housing demand” (Iacoviello & Neri, 2010,
p. 150). Though the evidence favours the DE model with a one-quarter lag reference,
two key takeaways emerge from extending the comparison group: first, the prominence
of recent events in shaping agents’ expectations, and second, that most attention beyond
this period centres between quarters three and ten.

In addition, a historical shock decomposition analysis indicates that the shock trans-
mission mechanism in the economy remains stable regardless of agents’ expectations
formation process. The difference lies in the more volatile expectations intrinsic to DE,
which amplify the impact of shocks without altering their transmission through the econ-
omy. I also examine the influence of DE on the economy using impulse responses. In
general, both DE frameworks share similar characteristics: initial over-reactions, greater
persistence and pronounced fluctuations. The extrapolation of shocks explains the initial
over-reactions and subsequent reversals observed in both DE models, but other features
are specific to each framework. In the DE model with a one-quarter reference, the econ-
omy’s rigidities propagate the initial overreaction. On the other hand, the DE model
with a twelve-quarters slow-moving reference exhibits more pronounced fluctuations, as
agents may remain overly optimistic (pessimistic) due to the longer span memory in their
expectation formation process.

A counterfactual analysis further disentangles the propagation and amplification mech-
anism of DE. When diagnostic agents who rely on the immediate past to form beliefs
suddenly become rational, i.e. the diagnostic parameter equals zero, the model struggles
to replicate house price volatility. This provides further evidence that it is the expecta-
tions mechanism, particularly DE, that drives cycles in the housing market. This paper
thereby contributes to a growing body of research advocating for models that integrate
expectation formation more closely aligned with observed economic behaviour, moving
beyond preference shocks to examine the dynamics of household and market expectations.

Related literature

This paper is linked to recent articles that incorporate DE in macroeconomic models.
One group of authors incorporates DE in macro-finance environments. Bordalo et al.
(2018) find that such an extended macroeconomic model captures the empirical findings
regarding credit cycles. Bordalo, Gennaioli, Shleifer, and Terry (2021) and Maxted (2024)
combine DE in real business cycle models with financial frictions. Their main results are
a greater variability in the macroeconomy and the ability to replicate financial crisis
aspects, as well as the counter-cyclicality of credit spreads. More recently, L’Huillier,
Singh, and Yoo (2024) derive a general framework to incorporate DE in linear models
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and show that DE are a viable behavioural alternative to generate fluctuations in business
cycle models with shocks of more realistic size.

While the previous studies explored DE within a one-period reference framework, Bianchi
et al. (2024) focus on distant memory and find that DE generate considerably rich dy-
namics, characterised by significant persistence and sudden changes in the way shocks
propagate. In this line, and closely related to my article, Qi (2021) and Bounader and
Elekdag (2024) introduce DE and distant memory in New Keynesian models with het-
erogeneity in agents, a housing market and financial frictions. The first author finds a
higher persistence and significant responses from house prices to a TFP shock in a TANK.
The second authors contribute showing that DE and financial frictions reinforce shock
amplification, especially after demand shocks. My work builds on these efforts and con-
tributes to this literature by empirically estimating the diagnostic parameter and weights
assigned to past references. It also incorporates a banking sector, which introduces addi-
tional frictions and channels through which the expectations can lead to a more volatile
economy.

This article also contributes to the literature on housing market dynamics in macroeco-
nomic models, particularly focusing on two main approaches: (i) preference shocks, and
(ii) expectations-driven excess volatility arising from rationality departures. The first
group of authors focuses on understanding the nature of shocks and movements in the
housing market, as well as the effects that such variations have on the economy. The work
of Iacoviello and Neri (2010) represents the cornerstone of this literature. The authors
find that a housing demand shock can explain at least a quarter of the housing market
fluctuations, estimating its size at around 4%. In their words, this shock is “spontaneous,
primitive and their interpretable characteristics are questionable” (p. 158).

Other authors have estimated similar models for different countries. For example, Gerali,
Neri, Sessa, and Signoretti (2010) use European data and estimate a preference shock
of around 7%, while Funke and Paetz (2013) find that a comparable shock in the Hong
Kong housing market has a standard deviation of roughly 10%. Similarly, Mendicino
and Punzi (2014) analyse the relative importance of such shock in a theoretical model,
concluding that it accounts for 70% of the volatility in house prices. More recently, Ge, Li,
Li, and Liu (2022) examine the Chinese housing market and find that a preference shock
of approximately 7% explains over 80% of the sector’s volatility. In contrast to these
studies, my main contribution here is to provide a more comprehensive alternative to the
“catchall of all the unmodeled disturbances that can affect housing demand” (Iacoviello
& Neri, 2010, p. 150) captured by the preference shock .

In this paper, I introduce a deviation from rational expectations (RE), aligning with the
second group of literature that explores behavioural alternatives such as adaptive expec-

4



tations and learning. Some researchers, including Gelain et al. (2012), and Granziera
and Kozicki (2015), argue that adaptive expectations can increase the volatility of the
housing market due to overoptimism and overreaction to fundamentals. Moreover, this
framework has been successful in generating momentum and volatility in models of the
stock market, characteristics also presented in the housing sector. However, it is an ad
hoc not micro founded approach, making DE a better choice. In addition, DE has al-
ready shown its ability to capture the run-ups and sharp decline behaviour present in the
financial markets (Bordalo et al., 2018; Bordalo, Gennaioli, Kwon, & Shleifer, 2021).

On the other hand, including learning suggests that individuals form mechanical backward-
looking rules for belief updating. Chahrour and Gaballo (2021), Caines (2020) and
Gandré (2022) provide evidence supporting the inclusion of learning about house prices
as an amplification and propagation mechanism that helps to account for the dynam-
ics of macro variables, as well as credit and housing. However, this approach assumes
that agents do not understand the true data generating process. In contrast, DE have
three advantages over mechanical models of non-rational belief: it is forward-looking (no
Lucas critique), it better accounts for measured expectations of financial analysts and
macro forecasters, and its diagnostic parameters have been estimated in some data sets
(Bordalo, Gennaioli, Shleifer, & Terry, 2021; L’Huillier et al., 2024; Bianchi et al., 2024).
Additionally, DE have been successfully applied not only in macro and finance settings
but also in, for example, modelling social stereotypes (Bordalo, Coffman, Gennaioli, &
Shleifer, 2016). Therefore, these factors provide a solid basis for incorporating DE into
a macroeconomic model to analyse housing market behaviour, which represents another
contribution of this paper.

Structure of the paper

The rest of the paper is structured as follows. In section 2, I present the model. Section
3 explains how I include and solve the DE model. The calibration and estimation of
the parameters are outlined in Section 4. Section 5 discusses the quantitative results. A
counterfactual analysis is done in Section 6, and Section 7 concludes.

2 Model

The basic structure of the model is similar to Iacoviello (2005), Iacoviello and Neri (2010)
and Gelain et al. (2012), although I extend it in some ways. First, I include capital
producers which sell part of the total capital stock to wholesale firms and rent the rest to
housing firms. This allows to derive an explicit expression for the real price of capital, as
well as for the rental rate of capital in the housing sector (Gambacorta & Signoretti, 2014).
Second, to model the housing market price and quantity dynamics, I introduce a housing
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production sector that produces houses using capital and labour services (Iacoviello &
Neri, 2010). Finally, I incorporate financial frictions using a banking sector as in Gertler
and Karadi (2011). In this section, I present the derivations under RE, whereas in a later
section I show how to modify the model to introduce DE.

Figure 2: Economy Model
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The model summarised in Figure 2 consists of two types of households: patient and
impatient, each of mass 1 − n and n, respectively. The patient households are the savers
in the economy. They provide liquidity to the impatient households, borrowers, in the
form of loans. There are five types of firms: (i) wholesale firms producing wholesale
goods, (ii) retailer firms re-packaging wholesale goods and introducing a price rigidity à
la Calvo, (iii) a final good firm producing its output using goods from retailers as inputs,
(iv) housing firms producing houses with labour and capital as inputs, and (v) capital
good firms combining undepreciated capital and the final good to update and produce new
capital. The model also features a banking sector as in Gertler and Karadi (2011). These
banks act as financial intermediaries between patient households’ deposits and wholesale
firms’ loans.2 Finally, there is a central bank that sets the nominal interest rate following a
simple Taylor-type rule. The model includes habit formation in consumption, investment

2This version of the model does not allow for arbitrage between loan and deposit interest rates, this
means the banks do not intermediate between households. The main reason behind this choice is to
keep the banking problem easy to track. However, in a future version, banks will not only serve as
intermediaries between patient households and firms, they will also mediate transactions with impatient
households.
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adjustment costs, and nominal rigidities. Time is discrete, and one period in the model
represents one quarter.

2.1 Households

The economy is populated by two type of households, patient and impatient denoted with
subscripts “p” and “i”, respectively. They consume non-durable goods, buy housing and
supply labour. The patient households save in the form of deposits in banks and lend
money to impatient households, who borrow using their housing as collateral.

2.1.1 Patient household

A representative patient household derives utility from consumption, cp,t, and housing,
hp,t, and disutility from labour np,t. She discounts future utility flows by βp and her
lifetime utility is:

Up = E0

∞∑
t=0

βtp

log(cp,t − γcp,t−1) + Γtνhp log(hp,t) − νnp
n1+φ
p,t

1 + φ

, (1)

where Γt is a housing preference shock common to both agents that follows the AR(1)
process log(Γt+1) = ρΓlog(Γt) + σϵΓϵ

Γ
t+1, with ρΓ ∈ (0, 1) and ϵΓ

t+1 ∼ i.i.d.[0, σ2
ϵΓ ]. The

habit formation parameter is γ ∈ (0,1), and νhp and νnp govern the patient household’s
utility from housing and labour, respectively. The parameter φ is the inverse elasticity
of labour supply.

The patient household maximises her utility subject to the following budget constraint:

cp,t + qt[hp,t − (1 − δh)hp,t−1] + dBt + dlt = dBt−1R
d
t−1

πt
+ dlt−1R

l
t−1

πt
+wtnp,t + Πf,t + ΠB,t. (2)

qt is real house prices, δh is the rate at which housing depreciates, and wt is the real wage
from supplying labour. The term dBt−1 represents deposits held by the patient household
in the bank at the end of time t−1, which yield a risk-less nominal return of Rd

t−1 between
period t− 1 and t. dlt−1 represents loans that the patient household lent to the impatient
one, yielding a nominal return of Rl

t−1. πt is the gross inflation rate and Πf,t and ΠB,t

are transfers of profits from the firms and the banks.

The resulting first order conditions of the patient household’s maximisation problem with
respect to cp,t, np,t, hp,t, dBt and dlt are:
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λp,t = 1
(cp,t − γcp,t−1)

− βpγ

(cp,t+1 − γcp,t)
. (3)

νnp n
φ
p,t = wtλp,t. (4)

λp,tqt =
Γtνhp
hp,t

+ βpEt
[
(1 − δh)qt+1λp,t+1

]
. (5)

λp,t = βpEt
[
λp,t+1

Rd
t

πt+1

]
. (6)

λp,t = βpEt
[
λp,t+1

Rl
t

πt+1

]
. (7)

λp,t denotes the marginal utility of consumption.

2.1.2 Impatient household

A representative impatient household also receives utility from consumption, ci,t, and
housing, hi,t, and disutility from labour ni,t. She discounts future utility flows by βi,
which is smaller than the patient household’s discount factor, βp, and her lifetime utility
is:

Ui = E0

∞∑
t=0

βti

[
log(ci,t − γci,t−1) + Γtνhi log(hi,t) − νni

n1+φ
i,t

1 + φ

]
, (8)

where γ ∈ (0,1) and φ are the same habit formation and inverse elasticity of labour supply
parameters as for the patient household. νhi and νni governs the utility from housing and
labour for the impatient household. She faces the same housing preference shock Γt, and
she maximises her utility subject to the following budget constraint:

ci,t + qt(hi,t − (1 − δh)hi,t−1) + lt−1R
l
t−1

πt
= wtni,t + lt. (9)

She also faces a limit to her liabilities during period t as a fraction χ of her expected
housing value in period t+ 1:

lt ≤ χ

Rl
t

Et[qt+1πt+1]hi,t. (10)
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Loans obtained by the impatient household from the patient household between period
t− 1 and t are lt−1. The condition (1 − n)dlt = nlt has to be satisfied. It implies that, in
aggregation, money lent by patient households correspond to loans obtained by impatient
households. The parameter χ denotes the loan-to-value ratio and measures the liquidity
degree of housing.

The impatient household’s optimisation problem leads to the following first order condi-
tions with respect to ci,t, ni,t hi,t and lt:

λi,t = 1
(ci,t − γci,t−1)

− βbγ

(ci,t+1 − γci,t)
. (11)

νni n
φ
i,t = wtλi,t. (12)

λi,tqt = Γtνhi
hi,t

+ βiEt
[
(1 − δh)qt+1λi,t+1

]
+ µi,t

χ

Rl
t

Et[qt+1πt+1]. (13)

λi,t − µi,t = βiEt
[
λi,t+1

Rl
t

πt+1

]
, (14)

where λi,t is the marginal utility of consumption and µi,t is the Lagrange multiplier on
the collateral constraint (10).

2.2 Firms

Firms in this economy are owned by the patient households. There are five types of
firms: wholesale firms, retailer firms, final good producers, capital producers and housing
producers.

2.2.1 Wholesale firms

These firms buy capital KW
t−1, at the end of time t− 1, from capital producers and they

hire labour NW
t from patient and impatient households. During time t, they produce

wholesale goods Y W
t using a Cobb-Douglas production function, and then they sell it to

retailer firms:

Y W
t = AtN

W
t

1−α
KW
t−1

α
, (15)

where At is total factor productivity in the non-durable goods sector. It obeys an AR(1)
process log(At+1) = ρAlog(At) + σϵAϵ

A
t+1, where and ρA ∈ (0, 1) and ϵAt+1 ∼ i.i.d.[0, σ2

ϵA ].
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At the end of period t, these firms obtain funds from the banking sector to finance the
acquisition of capital KW

t . In order to do so, they take St loans equal to the number of
units of capital acquired (KW

t ), and price each at the unit price of capital qKt .

qKt K
W
t = qKt St. (16)

After finishing production, these firms have the option of selling its undepreciated capital
in the open market. Therefore, their earnings are conformed by the value of output and
capital stock. Expenditure on labour and capital stock represent their total cost. The
profit maximisation problem is:

max
NW

t ,KW
t

[
Pm,tY

W
t + (1 − δk)qKt−1K

W
t−1 −RK

t q
K
t−1K

W
t − wtN

W
t

]
,

subject to the production function. Pm,t is the relative intermediate output price, RK
t is

the state-contingent required return on capital during time t. The first order conditions
for this firm, i.e. the demands for labour and capital, are:

wt = Pm,t(1 − α)At

KW
t−1

NW
t

α, (17)

qKt−1R
K
t = rKt + (1 − δk)qKt , (18)

where rKt = Pm,tαAt

(
NW

t

KW
t−1

)1−α
is the rental rate of capital. Solving for the labour to

capital ratio, replacing it in equation (17) and equating the results, I obtain an expression
for the marginal cost, which also satisfies Pm,t = mct:

mct = 1
At

 wt
1 − α

1−αrKt
α

α. (19)

2.2.2 Retailers and final good firms

The final good firm aggregates the output of retailer firms yt(j) according to a Dixit-
Stiglitz production technology and sells the final product in a perfectly competitive mar-
ket:

Yt =
[∫ 1

0
yt(j)

ϵ−1
ϵ di

] ϵ
ϵ−1

.
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Yt represents the final good, yt(j) denotes the j′th retailer input used in the production
of the final good, and ϵ denotes the elasticity of substitution between any two inputs,
assumed to be bigger than 1. This firm’s profit maximisation is a static problem, and
from its first order condition I obtain the demand equation for each input as:

yt(j) =
(
Pt(j)
Pt

)−ϵ

Yt.

Since this final good producing firm is competitive, it makes zero profit and its price is a
function of the inputs’ prices, i.e. an aggregate price index:

Pt =
[∫ 1

0
Pt(j)1−ϵdi

] 1
1−ϵ

.

Retailers simply re-package intermediate output, i.e. wholesale production. It takes one
intermediate output unit to make a unit of retail output. The marginal cost is thus the
relative intermediate output price Pm,t. The retailer seeks to maximise its profit solving:

max
Pt(j)

Pt(j)
(
Pt(j)
Pt

)−ϵ

Yt −mct

(
Pt(j)
Pt

)−ϵ

Yt.

After optimising with respect to the choice variable Pt(j), I obtain:

Pt(j) = ϵ

ϵ− 1mct.

This condition shows the market power that these firms have since they set their price,
when there is no price rigidity, as a mark-up of the marginal cost. However, under the
presence of some price rigidity, this result changes. Here I assume a price setting style à
la Calvo. At each period, the firms receive a random draw from a Bernoulli distribution.
This indicates that with a probability 1 − θ, θ ∈ [0, 1], the firm will be able to change
its price. Conversely, with a probability θ, the firm will not be able to set a new price,
keeping it unchanged.

Pt(j) = Pt−1(j),∀j ∈ [0, θ),

Pt(j) = P ∗
t (j),∀j ∈ [θ, 1],

where P ∗
t (j) is determined by maximising the following problem:
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max
P ∗

t (j)
Vt(j) = Et

∞∑
i=0

(βpθ)i
λp,t+iλp,t

[(
P ∗
t (j)
Pt+i

−mct+i

)(
P ∗
t (j)
Pt+i

)ϵ
Yt+i

].
The result determines that retailers who have obtained a successful draw will set their
prices as a constant mark-up on an expression related to their expected discounted nomi-
nal total costs, relative to an expression related to their expected discounted real output.

P ∗
t (j) = ϵ

ϵ− 1

[
Et
∑∞
i=0(βpθ)iλp,t+imct+iP ϵ

t+iYt+i
Et
∑∞
i=0(βpθ)iλp,t+iP ϵ−1

t+i Yt+i

]
. (20)

The above equation does not depend on j, so every retailer firm that can set its price in
period t will choose the same price. Moreover, in the limiting case of no price rigidity, the
familiar expression of a firm’s optimal price as a constant markup on real marginal costs
is obtained. Given the previous result and the price rigidity mechanism, the Dixit-Stiglitz
aggregate domestic price index evolves as:

P 1−ϵ
t = (1 − θ)(P ∗

t (j))1−ϵ + θP 1−ϵ
t−1 .

From the last equation, and defining gross inflation as
(

Pt

Pt−1

)
= πt, I obtain:

π1−ϵ
t = (1 − θ)

(
P ∗
t

Pt−1

)1−ϵ

+ θ

(
Pt−1

Pt−1

)1−ϵ

.

Solving for gross inflation reveals the relationship between inflation and the aggregate
price level. Inflation turns out to be a function of the relative price (π∗

t ) between the
price optimally set by the firms (P ∗

t ) and the price of the final good.

π1−ϵ
t = θ + (1 − θ) (π∗

t )
1−ϵ . (21)

2.2.3 Capital good firms

Patient households own capital good firms. During period t, they transform output in the
form of investment, It, and undepreciated capital, (1 − δk)Kt−1, to produce new capital
Kt. Part of this new capital, KW

t , is sold to wholesale firms, at the price qKt . The rest,
Kh
t , is rented to housing firms at the rental rate rht . The undepreciated capital, thus, is

equal to undepreciated capital rented to housing firms and undepreciated capital bought
from wholesale firms.

The representative capital producer maximises its expected discounted profits. At the end
of period t, this firm receives income from selling capital to wholesale firms and renting
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capital to housing firms, while paying the costs of gross investment and undepreciated
capital purchases from wholesale firms.

E0

∞∑
i=0

βip
λp,t+i
λp,t

[
qKt K

W
t − qKt (1 − δk)KW

t−1 + rK,ht Kh
t − It

]
. (22)

The maximisation problem is subjected to total capital law of motion and the definition
of aggregate capital stock.

Kt = (1 − δk)Kt−1 + [1 − ψ

2 (It/It−1 − 1)2]It, (23)

Kt = KW
t +Kh

t , (24)

where δk is the capital depreciation rate and ψ is a parameter measuring the cost for
adjusting investment. The law of motion implies that old capital can be converted one-to-
one into new capital, while the transformation of general output is subject to a quadratic
adjustment cost.

The optimality conditions with respect to KW
t , Kh

t and It are:

qKt − βp
λp,t+1

λp,t
(1 − δk)qKt+1 = λK,t − βp

λp,t+1

λp,t
(1 − δk)λK,t+1. (25)

rK,ht = λK,t − βp
λp,t+1

λp,t
(1 − δk)λK,t+1. (26)

1 = λK,t

[
1−ψ

2

(
It
It−1

−1
)2

−ψ
(
It
It−1

−1
)(

It
It−1

)]
+βpψEt

[
λp,t+1

λp,t
λK,t+1

(
It+1

It

)2(It+1

It
−1
)]
,

(27)

where λK,t denotes the Lagrange multiplier on the capital law of motion.

2.2.4 Housing firms

At time t, the housing firms produce new houses, Iht , using a Cobb-Douglas production
technology. This process requires capital, Kh

t−1, rented from the capital producer and
labour, Nh

t , hired from patient and impatient households at the real wage wt.

Iht = ZtN
h
t

1−µhKh
t−1

µh , (28)
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where µh is the income share of capital used to produce new housing. Zt is total factor
productivity in the housing sector. It obeys an AR(1) process log(Zt+1) = ρZ log(Zt) +
σϵZϵ

Z
t+1, where and ρZ ∈ (0, 1) and ϵZt+1 ∼ i.i.d.[0, σ2

ϵZ ].

These firms maximise the difference between their earnings from selling new houses and
their costs in wages and rent. Denoting the price of new houses by qt, the representative
housing producer maximisation problem is:

max
Nh

t ,K
h
t−1

[
qtI

h
t − rK,ht Kh

t−1 − wtN
h
t

]
,

subject to the production technology Iht .

The first order conditions, with respect to Nh
t and Kh

t−1, yield the following demands for
labour and capital:

wt = (1 − µh)qt
Iht
Nh
t

. (29)

rK,ht = µhqt
Iht
Kh
t−1

. (30)

2.3 Banks

This sector closely follows the setting proposed by Gertler and Kiyotaki (2010) and Gertler
and Karadi (2011). In every period, each bank obtains funds in the form of deposits Dτ,t

from patient households, which pays a nominal gross interest rate Rd
t in the next period.

The banks transform these funds in loans for the wholesale firms. They take the form of
equities Sτ,t, which yield an ex-post return RK

t+1.

Each bank τ has wealth -or net worth- NWτ,t at the end of period t, and its balance sheet
is given by:

qKt Sτ,t = NWτ,t +Di,t. (31)

It states that a bank finances loans with newly issued deposits and net worth. Moreover,
Dτ,t represents a bank’s debt, while Sτ,t a bank’s asset. Thus, NWτ,t will be its equity
capital, which evolves over time as the difference between expected earnings on loans to
wholesale firms and interest payments on the borrowing from patient households3:

3Gertler and Karadi (2011) assume that banks can only accumulate net worth by retained earnings
and do not issue new assets.
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NWτ,t+1 = RK
t+1q

K
t Sτ,t −Rd

tDτ,t,

=
(
RK
t+1 −Rd

t

)
qKt Sτ,t +Rd

tNWτ,t. (32)

From expression (32), one can appreciate that net worth’s growth, above the risk-less
return Rd

t , depends on the risk premium (RK
t+1 − Rd

t ) and total loans. Defining βiB
λp,t+i

λp,t

as the stochastic discount factor a banker τ at time t applies to earnings at time t + i,
where βB = βp ≥ βi because patient households own the banks, the bank will refuse to
fund any loans with a discounted return smaller than the discounted cost of deposits.
Therefore the following inequality must apply for the bank to operate:

βiBEt
[
λp,t+i
λp,t

(
RK
t+1 −Rd

t

)]
≥ 0, i ≥ 0.

Gertler and Karadi (2011) summarise this stating: “as long as the bank earns a risk
adjusted return greater than or equal to the return the household can earn on its deposits,
it pays for the banker to keep building assets until exiting the industry”(p. 20).

Each bank has a probability σ to continue functioning until next period, and a probability
to exit 1 − σ. This prevents the bank to overcome its financial constraint by saving
indefinitely. In addition, it is assumed that the number of banks entering and exiting the
sector are equal, keeping the total constant.

In each period, a banker’s objective is to maximise her expected final wealth:

V B
τ,t = maxEt

∞∑
i=0

(1 − σ)σiβi+1
B

λp,t+i
λp,t

NWτ,t+i, (33)

subject to its balance sheet (31), equity capital law of motion (32) and an incentive
constraint. This incentive constraint arises from introducing a moral hazard problem to
limit the bank’s ability to issue deposits. Following Gertler and Kiyotaki (2010), at the
beginning of a period, and after the bank has accepted deposits, it has two options: (i)
divert a fraction ζ of its assets to the patient households or (ii) hold its assets until the
next period when payoffs are realised, and then pay its deposit obligations.4 If the bank
chooses the first option, it closes, following the default on its debt. The bank will need
to afford the costs coming from creditors reclaiming their remaining fraction (1 − ζ) of
funds. Therefore, due to the risk that a bank may default on its debts, creditors will be
reluctant to lend large amounts to the bank at the beginning of each period. This creates
friction, acting as an incentive constraint for the bank when trying to obtain funds.

4By assumption, patient households do not deposit funds in the banks they own.
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V B
τ,t ≥ ζ(qKt St,τ ). (34)

Condition (34) suggests that the bank will refrain from diverting funds as long as its
franchise value is greater than or equal to the portion it can divert. Thus, I re-write the
bank’s problem equation (33) in a Bellman equation form as:

V B
τ,t = βBEt

λp,t+1

λp,t
{(1 − σ)NWτ,t + σmax V B

τ,t+1(NWτ,t+1)}, (35)

which is subject to:

qKt Sτ,t = NWτ,t +Dτ,t,

NWτ,t+1 =
(
RK
t+1 −Rd

t

)
Sτ,t +Rd

tNWτ,t,

V B
τ,t ≥ ζ(qkt,fSτ,t).

Assuming that the value function V B
τ,t is linear in NWτ,t, that is V B

τ,t = νBt NWτ,t, where
νBt depends only on aggregate quantities; and defining ξt as the Lagrange multiplier on
the incentive constraint, the first order conditions for Sτ,t and NWτ,t are:

ξtζ

(1 + ξt)
= Et

[
(1 − σ + σνbt+1)

(
RK
t+1 −Rd

t

)]
, (36)

1
(1 + ξt)

= Et
[
(1 − σ + σνbt+1)Rd

t

]
, (37)

where equation (36) makes the marginal benefit from increasing assets and the marginal
cost of tightening the incentive constraint equal. Defining the bank’s net worth adjusted
marginal value as Ωτ,t+1 = (1 − σ + σνbt+1), I re-express the value function:

V B
τ,t = βBEt

λp,t+1

λp,t

{
Ωτ,t+1

[(
RK
t+1 −Rd

t

)
qKt Sτ,t +Rd

tNWτ,t

]}
.

Multiplying and dividing this expression by NWτ,t, I obtain:

V B
τ,t = βBEt

λp,t+1

λp,t

{
Ωτ,t+1

[(
RK
t+1 −Rd

t

)
ϕt +Rd

t

]}
NWτ,t, (38)

where ϕt = qK
t Sτ,t

NWτ,t
and the term between curly brackets is νbt . Therefore, if the incentive

constraint is binding, νbt = ζϕt:
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qKt Sτ,t = ϕtNWτ,t. (39)

Using the result from the previous two equations, and after some rearranging, I obtain
an expression for the leverage:

ϕt =
βBEt λp,t+1

λp,t
Ωτ,t+1R

d
t

ζ − βBEt λp,t+1
λp,t

Ωτ,t+1

(
RK
t+1 −Rd

t

) . (40)

This expression does not depend on any firm-specific factor, making it possible to sum
across wholesale firms, obtaining:

qKt St = ϕtNWt. (41)

Finally, I derive a law of motion for NWt as the sum of the old (existing) and young
(new) banks net worth:

NWt = NWo,t +NWn,t. (42)

Given that a fraction σ of bankers at time t− 1 survive until time t, NWo,t is:

NWo,t = σ
(
RK
t q

K
t−1St−1 −Rd

t−1Dt−1

)
. (43)

As I described earlier, new banks receive funds from patient households, following Gertler
and Karadi (2011), I assume this transfer equals to a small fraction of the assets inter-
mediated by exiting banks in their final operating period. That is, banks exiting with an
i.i.d probability have assets worth (1 − σ)(RK

t q
K
t−1St−1), from which a fraction ω/(1 − σ)

is transferred to the entering banks.

NWn,t = ω(RK
t q

K
t−1St−1). (44)

Combining these two conditions, I obtain the law of motion of NWt:

NWt = (σ + ω)(RK
t q

K
t−1St−1) − σRd

t−1Dt−1. (45)

17



2.4 Central Bank

To close the model, the central bank sets the nominal interest rate Rd
t following a Taylor-

type rule, which targets inflation and GDP growth stabilisation .

Rd
t

R̄d
=
πt
π̄

ωπ
 GDPt
GDPt−1

ωy

Mt, (46)

where the steady state of the policy rate is R̄d = (1/βp). I follow Iacoviello and Neri
(2010) and define GDP as the sum of consumption and investment, both non-residential
and residential. That is, GDPt = Ct + It + q̄Iht , where q̄ denotes the steady state
value of real housing prices, so that short-run changes in real house prices do not affect
GDP growth (Iacoviello & Neri, 2010, p. 132). Mt is a monetary policy shock, which
follows an AR(1) process log(Mt+1) = ρM log(Mt) + σϵM ϵ

M
t+1, where and ρM ∈ (0, 1) and

ϵMt+1 ∼ i.i.d.[0, σ2
ϵM ].

2.5 Market clearing and aggregation

In equilibrium, each household’s weighted contribution to consumption, labour and hous-
ing will determine the aggregates Ct, Nt and Ht, respectively.

Ct = (1 − n)cp,t + (n)ci,t. (47)

Nt = (1 − n)np,t + (n)ni,t. (48)

Ht = (1 − n)hp,t + (n)hi,t. (49)

In addition, the amount of total labour demanded by wholesale firms and housing firms
should equal the total amount of labour supplied by households.

Nt = NW
t +Nh

t . (50)

Total loans obtained by the impatient households must equal total loans provided by the
patient household. Similarly, total deposits in the banking sector needs to equal aggregate
deposits from the patient households.

(1 − n)dlt = nlt. (51)
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Dt = (1 − n)dBt . (52)

As previously specified, total loans issued by the wholesale firms to acquire funding for
their capital acquisition must equal their demand of capital.

St = KW
t . (53)

From capital producers, total capital stock should equal the sum of capital supplied to
wholesale firms and capital rented to housing firms.

Kt = KW
t +Kh

t . (54)

And its law of motion is:

Kt = (1 − δk)Kt−1 + [1 − ψ

2 (It/It−1 − 1)2]It. (55)

New housing or housing investment must also satisfy a law of motion. It establishes that
new housing is equal to the difference between housing stock at time t net of undepreciated
housing stock from time t− 1.

Iht = Ht − (1 − δh)Ht−1. (56)

The markets for non-durable goods must clear.

Yt = Ct + It. (57)

In addition, the link between final good and wholesale goods is given by5:

Yt = Y W
t

νjt
, (58)

where νjt is a measure of price dispersion. Finally, I introduce the sum of durable and
non-durable goods as GDP:

GDPt = Ct + It + q̄Iht . (59)
5For the derivation of this condition, see Appendix 8.1
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3 Model solution

In this section I present the solution method I use to solve linear models with diagnostic
agents. Using this strategy, I aim to obtain a RE representation of the DE model, in
similar lines to L’Huillier et al. (2024).

3.1 Including diagnostic expectations

The main difference in this model is that agents are not rational; they are diagnos-
tic. Consequently, when forming expectations, these agents’ mind retrieves information
influenced by past context. This directly impacts the way diagnostic agents assign prob-
abilities to future scenarios, leading to mistakes, corrections, and exaggerated responses.
Following Bordalo, Gennaioli, Shleifer, and Terry (2021), I model this departure from
RE by assuming that agents misperceive the state of the economy. Following the shock
processes included in the model, I assume that the state of the economy evolves as an
AR(1) process, xt+1 = ρxxt + ϵt+1, where ϵt+1 ∼ N (µ, σ2) and xt+1 has a probability
density function (pdf):

f(xt+1|xt) = 1
σ

√
2π
e− (xt+1−ρxt)2

2σ2 . (60)

At time t, the diagnostic agents form beliefs about the future state in t + 1 by recalling
past realisations of economic conditions that are at the forefront of their mind. That is,
they compare information about the current economic conditions with what they already
know or remember about past behaviour. During such process, they use a distorted
density function instead of the rational pdf as defined by Bordalo et al. (2018):

fϕ(xt+1|xt) = f(xt+1|xt = x̄t)
[

f(xt+1|x̄t)
f(xt+1|ρx̄t−1)

]ϕ
Z. (61)

I denote the realisation of the variable by x̄t, thus the diagnostic distribution depends
on realisations of xt at the current time, x̄t, as well as in the past through the reference
event, x̄t−1. Here, I assume that the agent only considers the most recent past when
forming expectations. Z is a normalizing constant and ϕ ≥ 0 is the diagnostic parameter,
which embeds the rational case when it is equal to 0. Replacing (60) in (61), I obtain:

fϕ(xt+1|xt) = 1
σ

√
2π
e− (xt+1−ρx̄t)2

2σ2

 1
σ

√
2πe

− (xt+1−ρx̄t)2

2σ2

1
σ

√
2πe

− (xt+1−ρ2x̄t−1)2

2σ2


ϕ

Z, (62)
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After simplifying and grouping terms, I obtain:

fϕ(xt+1|xt) = 1
σ

√
2π
e

{
− (xt+1−ρx̄t)2

2σ2 − 1
2σ2 ϕ[(xt+1−ρx̄t)2−(xt+1−ρ2x̄t−1)2]

}
Z. (63)

Expanding and re-writing the argument in the exponential:

fϕ(xt+1|xt) = 1
σ

√
2π
exp

− 1
2σ2

{
x2
t+1 − 2xt+1

[
ρx̄t + ϕ

(
ρx̄t − ρ2x̄t−1

)]
+ (ρx̄t)2

+ ϕ
[
(ρx̄t)2 − (ρ2x̄t−1)2

] }Z.
(64)

The constant Z is given by:

Z = exp

− 1
2σ2

{
− ϕ

[
(ρx̄t)2 − (ρ2x̄t−1)2

]
+ 2ρx̄tϕ

[
ρx̄t − ρ2x̄t−1

]

+ ϕ2
[(
ρx̄t − ρ2x̄t−1

)]2 }.
(65)

Therefore, after some algebra, the diagnostic pdf when the reference is the recent past is
equal to:

fϕ(xt+1|xt) = 1
σ

√
2π
e

− 1
2σ2

{
[xt+1−(ρx̄t+ϕ(ρx̄t−ρ2x̄t−1))]2

}
. (66)

The diagnostic distribution is characterised to be a normal distribution with variance σ2

and a distorted mean.

Lemma 1: Assume that the state of the economy xt+1 follows an AR(1) process but agents
are diagnostic and just consider the most recent past when forming their expectations.
Then, following Gennaioli and Shleifer (2018), equation (66) turns out to be a function
that contains the kernel of a normal distribution with a distorted mean and the same
variance:

Eθt (xt+1) = Et(xt+1) + ϕ [Et(xt+1) − Et−1(xt+1)] , (67)

The results from Lemma 1 can be re-written in terms of the shock’s realisation.
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Lemma 2: Using the assumption of xt+1 following an AR(1) process, the shock realisation
can be obtained as ϵt = xt − ρxt−1, which after replacing it in equation (66) results:

fϕ(xt+1|xt) = 1
σ

√
2π
e

− 1
2σ2

{
[xt+1−(ρx̄t+ϕρϵt)]2

}
. (68)

Again, as in Gennaioli and Shleifer (2018) this is characterised by:

Eϕt (xt+1) = ρxt + ϕρϵt. (69)

This is the key finding. It indicates that when agents are diagnostic (ϕ > 0), there is
extrapolation in the direction of the shock. This occurs because agents misperceive the
shock to exhibit greater persistence than the true data generating process, mistakenly
interpreting it as ARMA(1,1) process.

The results from Lemma 1 and Lemma 2 can be generalized to the case where remote
memories influence the diagnostic agent’s reference group.6 The diagnostic pdf in this
case is:

fϕ(xt+1|xt) = 1
σ

√
2π
e− (xt+1−ρx̄t)2

2σ2


 S∏
s=1

1
σ

√
2πe

− (xt+1−ρsx̄t+1−s)2

2σ2

1
σ

√
2πe

− (xt+1−ρs+1x̄t−s)2

2σ2


αs

ϕ

Z, (70)

where S represents the time span used by the diagnostic agent for reference group, while
αs denotes the weights the agent attaches to present and past representativeness.

Lemma 3: Using the results from Lemma 1 and Lemma 2, and assuming that the agent
has a slow moving reference group, the diagnostic pdf in (70) is characterised by:

Eϕt (xt+1) = Et(xt+1) + ϕ
S∑
s=1

αs [Et+1−s(xt+1) − Et−s(xt+1)] , (71)

This can also be re-written in terms of the realisation of the shocks as:

Eϕt (xt+1) = ρxt + ϕ
S∑
s=1

ρsαsϵt+s−1. (72)

Thus, when the agent is diagnostic and has distant memory through a slow moving
reference group, the agent misperceives the shock as an ARMA(1,S) process, S being the
length of the periods used as reference group.

6The full derivation for the slow moving reference group is presented in Appendix 8.4.
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3.2 Solution procedure

I solve the model through first-order perturbation method following Klein (2000). First,
I assume that diagnostic agents form beliefs based on a more distant past by using a
moving average over the last twelve quarters as reference group.7 Consequently, making
use of expression (72), agents’ concept of the state of the economy is as if it follows an
ARMA(1,12) process instead of the true AR(1),

Eϕt (xt+1) = ρxt + ϕ[(ρα1ϵt + ρ2α2ϵt−1 + ρ3α3ϵt−2 + ρ4α4ϵt−3 + ρ5α5ϵt−4 + ρ6α6ϵt−5

+ ρ7α7ϵt−6 + ρ8α8ϵt−7 + ρ9α9ϵt−8 + ρ10α10ϵt−9 + ρ11α11ϵt−10 + ρ12α12ϵt−11)]
(73)

Second, I incorporate the MA components into the model as auxiliary variables and
rewrite the exogenous shock processes as ARMA(1,12). Third, I compute the non-
stochastic steady-state, point at which the model will be perturbed, by finding the fix-
point of the system using the Newton method. Forth, I log-linearise the model variables
around their steady state and solve the resulting system, which solution takes the follow-
ing form:

xt+1 = hxt + kϵt+1

yt = gxt,

where yt denotes a (m x 1) vector of endogenous variables and xt stacks a (n x 1) vector
of state variables. The latter is comprised of three sub-vectors. The first one, of size
(n1 x 1), contains the auxiliary variables for the MA terms of the shock processes. The
second, of size (n2 x 1), includes the exogenous variables; and the third, of size (n3 x
1), is composed of the predetermined variables. Therefore, matrix g linking the decision
variables with the states can also be divided into three sub-matrices:

g =

 g1 g2 g3

 .

The sub-matrices g2 and g3 of size (m x n2) and (m x n3) connect decision variables
to the exogenous states and the predetermined variables, respectively. A comparison

7In the main body of the article, I also present results in which the reference group is the most
recent past. In this case all the attention is on the previous quarter, i.e. α1 is equal to 1, whereas the
remaining weights are equal to zero. The choice of twelve quarters follows from the empirical evidence in
the housing market found by Adam et al. (2024) and the estimation results from Bianchi et al. (2024).
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between the solutions of these sub-matrices under RE and DE reveals that they remain
unchanged since they are independent of the diagnostic parameter. The distinction arises
in sub-matrix g1, sized (m x n1), which links the decision variables to the realised shocks.
While the elements of this matrix are zero in the rational solution, in the diagnostic
solution, they take on non-zero values. This reflects the source of the additional volatility
that DE generate, and it aligns with the findings of L’Huillier et al. (2024).

As the DE solution is based on agents misperceving the state of the economy as an
ARMA(1,12) rather than an AR(1) process, the first-order coefficients matrix in the
state-transition equation, h, still includes the parameters associated with the MA terms.
The last step, therefore, is to mute these terms so that any further analysis is done under
the true data-generating process, but with agents having DE regarding the state of the
economy.

4 Model Estimation

I estimate the models using U.S. quarterly data for the period 1984:Q1 to 2019:Q4, which
I describe in subsection 4.1. The estimation approach adopted is Sequential Monte Carlo,
as outlined in subsection 4.2. Subsection 4.3 describes the parameters calibration, while
subsection 4.4 shows the prior distributions of the estimated parameters. Subsection 4.5
exhibits the estimation results.

4.1 Data

I use eight macroeconomic time series for the calibration and estimation of the model.
All variables are log-transformed, detrended using first-difference and demeaned, with
the exception of the nominal interest rate which is transformed into quarterly rate and
demeaned. Housing wealth is expressed in real per cápita terms as it is adjusted by
the population level and the implicit price deflator, while the total amount of loans to
households equals the sum of residential mortgages and consumer credit of households and
non-profit organisations.8 I obtained the data from the Board of Governors of the Federal
Reserve System and the Bureau of Economic Analysis, using the National Accounts and
Flow of Funds. I also use the Census Bureau House Price Index. The full set of variables
is:

• Real Gross Domestic Product growth: ∆GDPt = ln(GDPt/GDPt−1)

• GDP implicit price deflator: π̂t = ln(Pt/Pt−1)

• Real Residential Investment growth: ∆Iht = ln(Iht /Iht−1)
8A detailed explanation of the data series can be found in Appendix 8.6.
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• Real House price growth: ∆qt = ln(qt/qt−1)

• Nominal interest rate: R̂d
t = ln(Rt/Rt−1)

• Real Loans growth: ∆lt = ln(lt/lt−1)

• Real Non-residential investment growth: ∆It = ln(It/It−1)

• Real Housing wealth growth: ∆(qHt) = ln(qHt/qHt−1)

Figure 3: U.S. Macroeconomic variables.
Note: Real gross domestic product, real residential investment, real house price, real

loans, real non-residential investment and real housing wealth growths are in
percentages. Inflation and nominal interest rate are quarterly.

4.2 Methodology

I estimate the log-linearised models using a Bayesian strategy method, drawing on recent
advancements in macroeconomic model estimation by Herbst and Schorfheide (2014).
The authors introduce an alternative class of algorithms to the traditional random walk
Metropolis-Hastings (RWMH) method, known as Sequential Monte Carlo (SMC). This
estimation method for DSGE models combines features of classic importance sampling
and MCMC techniques.

The aim is to infer the parameters’ posterior distribution by combining the likelihood
function, p(θ|Y ), of a DSGE model with a prior distribution, p(θ), on its parameters:
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p(θ|Y ) = p(Y |θ)p(θ)
p(Y ) ,

where θ indicates a vector of parameters and Y represents the data set. The marginal
data density is p(Y ) =

∫
p(Y |θ)p(θ)dθ.

In order to do so, the SMC relies on a candidate density, g(θ), from which it generates
sample draws or particles, as it is an importance sampler at its core. Each of these
particles has an associated importance weight, w(θ). This follows from the identity:

Et[h(θ)] =
∫
h(θ)p(Y |θ)p(θ)

p(Y ) dθ = 1
p(Y )

∫
h(θ)p(Y |θ)p(θ)

g(θ) g(θ)dθ,

where the weights on the draws are w(θ) = p(Y |θ)p(θ)
g(θ) . This means that at each stage of

the algorithm, a set of pairs {(θi, w(θi))}Ni=1 will be an approximation of p(θ|Y ).

The algorithm initiates by drawing initial particles from the prior distribution, as it
represents a distribution that is easy to sample from. The algorithm ends with a sequence
of pairs of particles and weights that embody the final importance sample approximation
of the posterior. In between, the process recursively generates intermediate or “bridge”
distributions. These bridge distributions serve as transitional steps in the iterative process
that gradually shifts the initial prior distribution towards the final posterior distribution.
Each iteration refines the approximation of the posterior by updating the particle weights
and resampling. It can be thought as an iterative moulding process that refines and
transition the distributions from their initial prior form to its posterior.9

I use SMC because it offers advantages over RWMH. For instance, it is suitable for paral-
lel computing during the model’s estimation step for many particles, thereby enhancing
computational efficiency. Additionally, when new data become available, SMC facilitates
the re-estimation of the model by picking up from where it was left off, saving computa-
tional resources and time. It also eliminates the need for additional computations since
it approximates the marginal likelihood as a by product.

The estimation was performed using Julia 1.7.3 in Atom. I adapted the code for the SMC
algorithm from Salazar-Perez and Seoane (2024). The current choice of hyperparameters
for the SMC is constrained by available computational resource. The number of particles
and stages are set to 500 and 200, respectively. The bending coefficient, is within the
range used in the literature and it is borrowed from Salazar-Perez and Seoane (2024).10

9For a more detailed explanation of the algorithm see Herbst and Schorfheide (2014) and Cai et al.
(2021).

10The bending coefficient controls the likelihood tempering in the algorithm. In this paper, I use the
fixed tempering schedule from Herbst and Schorfheide (2014).
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I adjust the scaling factor to target an acceptance rate around 25%, as it is done in Cai
et al. (2021).

4.3 Calibration

In this section, I present the calibration of the model. Table 1 lists the structural param-
eters with their respective values and the corresponding source or target. Each period
in the model represents one quarter. The discount factor for the patient households, βp,
is set to 0.9915. This implies a 3.42% annualized interest rate in steady state, which is
close to the average 3.52% over the sample period.

Some parameters are calibrated to match first-order moments in the data. The housing
depreciation rate, δh, is set to 0.0060 in order to generate an average total housing wealth
to GDP of 145.53% as in the period analysed. This parameter value results slightly
lower than the one from Iacoviello and Neri (2010) and Mendicino and Punzi (2014),
and it implies an annual housing depreciation of around 2.5%. The loan-to-value ratio,
χ, is calibrated at a value 0.8016. This choice aims to achieve a household credit to
total housing wealth ratio of 35.24%, and it is consistent with the range found in the
literature (Iacoviello & Neri, 2010; Gelain et al., 2012; Mendicino & Punzi, 2014, among
others). The patient households’ housing preference weight is set to 0.2361 so that the
share of total housing wealth owned by patient households is 60%.11 Moreover, the model
generates a residential investment to GDP ratio equal to the sample period average of
3.44%, by setting the housing preference weight of the impatient households to 0.0906.
Finally, I calibrate the elasticity of final good with respect to capital, α, to 0.3752, and
I set the capital share in the housing production, µh, at 0.3 to obtain a non-residential
investment to GDP ratio of 27%. The first parameter has a value that falls within the
range commonly used in macroeconomic models, while the second results from the sum
of the exponents for all the inputs that are not labour in Iacoviello and Neri (2010).

The remaining structural parameters are borrowed from the literature. For instance, the
proportion of impatient households, n, follows from Gelain et al. (2012) and targets the
top decile of households in the economy. The discount factor for the impatient household,
βi, is 0.9715. This value ensures that while linearising around the steady-state, these
households’ borrowing constraint is binding. The chosen value for the inverse labour
supply elasticity φ is 0.1, which as in Gelain et al. (2012), implies a very flexible labour
supply. This article is also the source of the labour disutility parameters for the patient
and impatient household, νnp and νni . The rate at which capital depreciates, δk, equals
0.025. This value is in line with standard values in the literature. The retailers target a
10% steady state mark-up, thus I set the elasticity of substitution, ϵ, to 11. Finally, the

11The total housing wealth share hold by the patient household is targeted following Wolff (2016).
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Table 1: Calibration: Structural parameters

Description Parameter Value Target/Source

Households

Proportion of impatient households n 0.9 Gelain et al. (2012)
Inverse elasticity of labour supply φ 0.1 Gelain et al. (2012)

Patient Households

Discount factor βp 0.9915 Annualized interest rate of 3.52%
Housing preference weight νh

p 0.2361 Patient households share of housing wealth = 60%
Labour disutility νn

p 1.19 Gelain et al. (2012)

Impatient Households

Discount factor βi 0.9715 Borrowing constraint’s binding
Housing preference weight νh

i 0.0906 Residential investment/GDP = 3.44%
Labour disutility νn

i 4.54 Gelain et al. (2012)
Loan-to-value ratio χ 0.8016 Household credit to total housing wealth = 35.24%

Wholesale firms

Elasticity of final good with respect to capital α 0.3752 Investment/GDP = 27%

Final firms and Retailers firms

Elasticity of substitution ϵ 11 10 % markup

Capital good firms

Capital depreciation rate δk 0.025 Typical in macroeconomic model literature

Housing firms

Housing depreciation rate δh 0.0060 Housing wealth/GDP = 143.23%
Elasticity of housing with respect to capital µh 0.3 Iacoviello and Neri (2010)

Banks

Banks’ surviving probability σ 0.9725 Gertler and Karadi (2011)
Absconding rate of the bankers ζ 0.383 Gertler and Karadi (2011)
Start up fund for the new bankers ω 0.003 Gertler and Karadi (2011)

banking sector is characterised exactly as in Gertler and Karadi (2011). The parameters
are consistent with the authors’ goal to achieve an interest rate spread of around one
hundred basis points, maintain a steady state leverage ratio at 4, and ensure an average
banker lifespan of 10 years. Therefore, the banker’s survival probability, σ, is 0.9725, the
fraction of capital that the banker can steal, ζ, is equal to 0.383, and the start up fund
for new bankers is 0.003. This implies a spread close to 1% and a leverage ratio slightly
below 4.

4.4 Prior distributions

Table 2 summarises the prior distributions for the parameters to estimate. I set the
shapes for each prior based on the feasible parameter support and in consistency with
previous studies. Accordingly, for the standard errors of the shocks, I use an inverse
gamma distribution as in L’Huillier et al. (2024) and Justiniano, Primiceri, and Tam-
balotti (2010).12 For the persistence, since these parameters are bounded between 0 and

12The Inverse Gamma distribution is typically used as a prior for the variance estimation. However, as
noted by Adjemian (2016), priors in practice are often defined over the standard deviation of a structural
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1, I choose a loose beta prior with mean 0.5 and standard deviation 0.2. The values for
the monetary policy rule feedback parameters were set equal to Taylor’s original specifi-
cations. I choose a normal distribution with prior mean 1.5 for the response to inflation,
and a 0.125 mean for the response to output growth; their standard deviations are 0.25
and 0.05, respectively. The prior on the investment adjustment costs follows Smets and
Wouters (2007), it is a normal with mean 4.0 and standard deviation 1.5. Whereas for the
habit formation and Calvo parameter, I chose the same beta priors as in Iacoviello and
Neri (2010). The priors’ means are 0.5 and 0.667, respectively, with standard deviations
equal to 0.05 and 0.075.

Table 2: Prior distribution of the paramaters

Description Parameter Distribution Mean Std. dev
Structural Parameters
Inv. adjustment cost ψ Normal 4.0 1.5
Habit formation γ Beta 0.667 0.05
Calvo parameter θ Beta 0.5 0.075
Taylor rule inflation ωπ Normal 1.50 0.25
Taylor rule output growth ω∆y Normal 0.125 0.05
Diagnostic parameters
Diagnostic parameter ϕ Normal 1.0 0.3
1st quarter reference α1 Uniform 0.5 0.29
2nd quarter reference α2 Uniform 0.5 0.29
3rd quarter reference α3 Uniform 0.5 0.29
4th quarter reference α4 Uniform 0.5 0.29
5th quarter reference α5 Uniform 0.5 0.29
6th quarter reference α6 Uniform 0.5 0.29
7th quarter reference α7 Uniform 0.5 0.29
8th quarter reference α8 Uniform 0.5 0.29
9th quarter reference α9 Uniform 0.5 0.29
10th quarter reference α10 Uniform 0.5 0.29
11th quarter reference α11 Uniform 0.5 0.29
12th quarter reference α12 Uniform 0.5 0.29
Autoregressive coefficients
Goods TFP ρA Beta 0.5 0.2
Housing TFP ρZ Beta 0.5 0.2
Monetary policy ρM Beta 0.5 0.2
Housing demand ρΓ Beta 0.5 0.2
Standard deviation of shocks
Good TFP 100*σϵA Inverse Gamma 0.5 2.0
Housing TFP 100*σϵZ Inverse Gamma 0.5 2.0
Monetary policy 100*σϵM Inverse Gamma 0.5 2.0
Housing demand 100*σϵΓ Inverse Gamma 0.5 2.0

Note: The Inverse Gamma priors are of the form p(σ|ν, s) ∝ σ−ν−1e− s
2σ2 . I borrow the function

InverseGamma1.jl and inverse_gamma_1_specification from the Dynare package for Julia,
developed by Adjemian et al. (2024), to obtain the parameters ν and s of and Inverse Gamma

distribution characterised as in the table above.

For the diagnostic parameter, I employ a normal distribution with mean 1.0 and stan-
dard deviation 0.3, as in L’Huillier et al. (2024). Prior information on this parameter
is limited given the scarcity of studies estimating it. A similar situation applies to the
weights on backward references, with Bianchi et al. (2024) providing the only estimation
example in the literature.13 In their study, the approach involves modelling these weights
shock. Following this convention in the literature, I adopt the Type I Inverse Gamma distribution as
defined by the author.

13It is worth noting that in this article, I follow Bordalo et al. (2018) when assuming that remote
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using a beta distribution. They start by estimating the mean and standard deviation of
this distribution, then they proceed with rescaling and discretizing it. Here, however, I
estimate each weight employing a diffuse prior over the range (0,1), allowing the data to
inform the analysis. The purpose behind estimating diagnostic and memory parameters
is twofold: to support the presence of DE in the housing market, and to demonstrate
that DSGE models incorporating DE can fit business cycle data better than those with
RE.

4.5 Estimation results

I jointly estimate the remaining parameters to match second-order moments of four U.S.
time series: real GDP growth, inflation, real residential investment growth and real house
price growth, for the period 1984-2019. Table 3 gathers the results for the three estimated
models: the diagnostic model with a twelve-quarters moving reference group, the diag-
nostic model with one-quarter reference group, and the rational model.14 I report the
mean posterior and the 90% high probability density credible interval (HPDI) for each
parameter.15 The last line exhibits the log of the marginal likelihood for each model.

The parameter values differ among the estimated models. Adjusting investment becomes
more costly in the diagnostic model, more than twice as much when the reference period is
the immediate past.16 This tempers the diagnostic firms overreaction such that the fluctu-
ations in investment are not as pronounced as they could be with a lower adjustment cost.
The Calvo parameter estimates are very similar between the models. They indicate that
firms’ prices are sticky, as they can be reset once every seven quarters. These results are
comparable with the values obtained by Iacoviello and Neri (2010). Households seem to
have a somewhat high degree of habit formation with estimated values for this parameter
slightly above 0.7. Nevertheless, it is a value close to the 0.6 proposed by Leith, Moldovan,
and Rossi (2012) and supported by the meta-analysis in Havranek, Rusnak, and Sokolova
(2017). Similarly, there is some variation in the central bank’s Taylor rule parameters.
In comparison to RE, the inflation feedback increases if agents form DE considering the

memories affect the way the diagnostic agent form expectations. Therefore, I define representativeness
in terms of current and past likelihood ratios. On the other hand, Bianchi et al. (2024) stipulate that
the comparison group the diagnostic agent uses as reference is an average of lagged RE conditional on
t−J information, where J is the time span of the lag. In Appendix 8.4 I show how these two approaches
are related.

14Note that the diagnostic framework with a twelve-quarters slow moving reference group encompasses
both the diagnostic model using the last quarter as reference and the rational case. In the first, all
attention is on the last quarter, meaning that α1 = 1 and the remaining αs are equal to zero. While, in
the second, all weights and the diagnostic parameter are equal to zero.

15Figures 9, 10 and 11 in Appendix 8.5 show the posterior distributions for the variables from each
model.

16Gabriel and Ghilardi (2012) estimate values within a similar range. They claim that such result
arises from an interaction between investment costs and financial frictions.

30



most recent past, whereas it decreases when they use a more distant memory. On the
other hand, the feedback on output growth shows the opposite behaviour. The central
bank is less sensitive to output growth volatility when the diagnostic agent comparison
group is the immediate past. However, when the reference group includes remoter mem-
ories, the central bank reacts as strong as in the rational case. These estimates suggest
that agents’ behaviour directly influences the central bank’s trade-off between stabilising
inflation and output growth volatility. This is in line with the conclusions of Bounader
and Elekdag (2024).

Table 3: Estimation

Description Parameter DE Ref: Q12 DE Ref: Q1 RE
Mean [0.05, 0.95] Mean [0.05, 0.95] Mean [0.05, 0.95]

Structural Parameters
Inv. adjustment cost ψ 0.8696 [0.5039,1.2422] 2.0600 [1.1548,3.3689] 0.8163 [0.4974,1.2026]
Habit formation γ 0.7224 [0.6383,0.7896] 0.7415 [0.6558,0.7956] 0.7143 [0.6199,0.7763]
Calvo parameter ϕ 0.8485 [0.8288,0.8637] 0.8732 [0.8604,0.8827] 0.8593 [0.8424,0.8718]
Taylor rule inflation ωπ 1.6680 [1.4599,1.8769] 1.7381 [1.4643,2.0024] 1.7183 [1.4661,1.9764]
Taylor rule output growth ω∆y 0.1972 [0.1249,0.2646] 0.1795 [0.0996,0.2455] 0.2029 [0.1102,0.2764]
Diagnostic parameters
Diagnostic parameter ϕ 0.1303 [0.0050,0.3265] 0.4555 [0.2819,0.6629]
1st quarter reference α1 0.6714 [0.2689,0.9517] 1.0
2nd quarter reference α2 0.2209 [0.0147,0.5706]
3rd quarter reference α3 0.2054 [0.0055,0.6358]
4th quarter reference α4 0.5226 [0.1065,0.9487]
5th quarter reference α5 0.0990 [0.0057,0.3096]
6th quarter reference α6 0.3797 [0.0380,0.8109]
7th quarter reference α7 0.5930 [0.1513,0.9603]
8th quarter reference α8 0.4963 [0.0910,0.8893]
9th quarter reference α9 0.4775 [0.0829,0.9068]
10th quarter reference α10 0.5157 [0.1629,0.8209]
11th quarter reference α11 0.5219 [0.1789,0.8178]
12th quarter reference α12 0.1340 [0.0087,0.4000]
Autoregressive coefficients
Goods TFP ρA 0.8307 [0.7791,0.8906] 0.8691 [0.8153,0.9217] 0.8169 [0.7559,0.8750]
Housing TFP ρZ 0.9413 [0.9212,0.9595] 0.9514 [0.9331,0.9660] 0.9546 [0.9379,0.9679]
Monetary policy ρM 0.6561 [0.5444,0.7373] 0.7625 [0.6807,0.8115] 0.6896 [0.5965,0.7573]
Housing demand ρΓ 0.9614 [0.9400,0.9800] 0.9445 [0.9080,0.9715] 0.9293 [0.8876,0.9633]
Standard deviation of shocks
Good TFP 100*σϵA 1.4435 [1.2829,1.6180] 1.3084 [1.1121,1.4724] 1.6550 [1.4820,1.8551]
Housing TFP 100*σϵZ 3.9204 [3.3804,3.9830] 3.7382 [3.3965,4.1451] 3.7089 [3.3996,4.1035]
Monetary policy 100*σϵM 0.3107 [0.2416,0.3896] 0.2222 [0.1719,0.2794] 0.2959 [0.2286,0.3771]
Housing demand 100*σϵΓ 5.3588 [4.0070,6.6326] 7.2345 [4.6284,10.9440] 11.2891 [7.2150,16.4806]
Log marginal likelihood 568.67 598.91 591.63

Note: The structural parameters include the investment adjustment cost (ψ), the habit formation (γ),
the Calvo parameter (θ), the Central Bank Taylor rule inflation feedback (ωπ), and output growth
feedback (ω∆y). The diagnostic parameters include the diagnosticity (ϕ) and the weights on past

quarters as reference (α12
n=1). The autocorrelation coefficients measure the persistence of the goods

TFP shock (ρA), housing TFP shock (ρZ), monetary shock (ρM ), and housing demand (preference)
shock (ρΓ), while σϵA

, σϵZ
, σϵM

, σϵΓ measure the standard deviations.

The key parameter in this analysis is the diagnostic parameter ϕ, which quantifies the
size of the departure from rationality. For the DE model with one-quarter lag reference,
the estimation places a substantial mass around a value of 0.4555, with a 90% HPDI
away from zero, providing strong evidence in favour of DE. This value is consistent with
the range found in the literature (L’Huillier et al., 2024; Bordalo, Gennaioli, Shleifer,
& Terry, 2021). However, in the case with twelve-quarters lags reference, the posterior
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mean drops to 0.1303. This finding contrasts with Bianchi et al. (2024), who reported
a diagnostic degree magnitude of around 2 when agents rely on distant memories. It
is important to note that their estimate is relatively high compared to others in the
literature. The authors obtained this under the assumption that the weights assigned to
lagged expectations sum to one, which then requires a higher degree of diagnosticity to
match initial overreactions. This is not the case in the current study, as I do not impose
any constraints on the weights. Instead, I am interested in capturing whether there is a
particular specification regarding their rate of decay.

Analysing the weights assigned to lagged representativeness as reference group, the esti-
mates indicate two key findings. First, the diagnostic agents reliance on past information
(as indicated by non-zeros α′s values) is inversely related to their degree of diagnosticity.
This suggest that the slow moving reference group plays a crucial role in distributing the
DE effects over time. Second, the most immediate quarter has the highest value, empha-
sizing the importance of recent events in shaping agents expectations. However, quarters
three to ten account for approximately 70% of the overall weight. This observation is con-
sistent with Bianchi et al. (2024), who found a similar concentration of attention within
these quarters in their model.

Turning to the estimates of the shocks, I note that differences between most of the au-
toregressive coefficients do not exhibit a clear pattern. ρA is shown to be more persistent
after the introduction of DE with the immediate past as reference, but when the compar-
ison group for the diagnostic agent is expanded including distant lags, the value decreases
towards the rational benchmark. ρM shows a similar outcome. In contrast, the autore-
gressive coefficients for the housing market behaves differently. ρZ remains relatively
stable, while ρΓ turns out higher under both DE approaches. A different story holds
for the standard deviations of the shocks. Overall, the estimated values are smaller in
the DE models versus the rational model, apart from the housing TFP shock. This is
consistent with evidence from previous articles pointing that DE is the channel through
which shocks explain fluctuations (L’Huillier et al., 2024).

Here, I focus on the magnitude of the housing preference shock. This shock has been
the major driver in rational models attempting to explain housing market dynamics,
with estimates between 3% to 10% (Iacoviello & Neri, 2010; Iacoviello, 2015; Ge et al.,
2022). Iacoviello and Neri (2010) describe this housing preference shock as either “genuine
shifts in tastes for housing, or a catchall for all the unmodeled disturbances that can
affect housing demand”(p. 150). The estimated standard deviation under rationality is
11.2891%. Instead, when agents are diagnostic, the values plummeted to 7.2345% and
5.3588%, contingent on whether their imperfect memory is driven by the immediate past
or the last three years. This finding suggests that a significant part of that “catchall”

32



seems to be related to the way agents form their expectations.17 Specifically, DE help
explain housing market dynamics while relying on a smaller preference shock. Gandré
(2022) reaches a similar conclusion, highlighting the necessity for stronger shock variances
under rationality compared to a model with behavioural agents.

5 Quantitative Results

This section evaluates the performance of the model in matching second order moments
for selected variables. The bottom line in Table 3 summarises these findings. It shows
that the log data density for the diagnostic model with 1 lag reference is 598.91, while
for the rational model it is lower, 591.63. The difference between these measures, called
Bayes factor (BF), is 7.28 in favour of the model with diagnostic agents, implying that its
fit is better against the RE model.18 This section proceeds showing how well the models
do in fitting targeted moments of the data series. It also includes an analysis about the
drivers of the business cycle.

5.1 Second order moments

I use the data in section 4.1 to calculate empirical moments. The time series variables
are demeaned to make them comparable with their model counterpart, where there is no
growth. I simulate series with the same length as the data, i.e. hundred and forty four
observations, ten thousand times.

Table 4 compares the standard deviation (in %) of targeted variables in the data with that
in the diagnostic models (DE Ref: Q12 and DE Ref: Q1), as well as in the rational model
(RE). The three models perform reasonably well. Although real GDP growth appears
more volatile in the models than in the data, the DE model with one lag as comparison
group generates a value closer to the observed target. While the models tend to produce a
more stable inflation, the results overall suggest that they successfully capture the excess
volatility in the housing market.

Despite this, the RE model consistently underestimates the magnitude of the relative
volatility observed in the data, whereas the evidence from the DE models is more accurate.
Specifically, the DE Ref: Q1 model offers the closest fit. It achieves this by relying less
on an ad hoc preference shock and more on the amplification mechanism inherent to
the expectation formation process. This highlights that DE seem to better capture the
dynamics of housing market fluctuations.

17By introducing DE with agents relying on the most recent past, the standard deviation estimate
decreases by 35.91%, whereas if they use a longer time-span memory, it drops by 52.53%.

18Kass and Raftery (1995) classifies a statistic 2log(BF) = 14.56, as in this paper, to be a very strong
evidence towards the diagnostic model over the rational model.

33



Table 4: Second-order moments in data and model

Data DE DE RE
Ref:Q12 Ref:Q1

Targeted moments
Standard deviation
∆ Real GDP 0.5764 0.8625 0.7271 0.8758
Relative standard deviation to GDP growth
Inflation 0.4262 0.3025 0.3397 0.3057
∆ Real House prices 2.9896 2.4381 3.1882 2.3282
∆ Real Residential Investment 5.9893 5.0424 5.3184 4.7029

Note: Growth rates for real GDP, real house price, real residential investment. Model moments were
obtained from averaging over ten thousand simulations of hundred and forty four observations each.

5.2 Historical shock decomposition

Figure 4 displays the historical shock decomposition for the model that better fits the
data, the diagnostic model with the immediate past as comparison group.19 This figure
illustrates the nearly one-to-one relation between the four variables used in the estimation
and the shocks. At each point in time, the bars indicate the proportion of the variable’s
deviation from its steady state that can be attributed to a particular shock, providing
insight into the dynamic effects of these shocks on the variable over time. The orange bar
represents the effect from the non-durable TFP shock, the green bar shows the impact
of the housing TFP shock, the purple bar reflects the monetary policy shock, and the
yellow bar represents the housing preference shock. The initial values, depicted in blue,
show the impact of how far the variable is from its steady state at that moment. Since
the data series do not begin at this point, the bars start out different from zero, but they
gradually diminish over time.

Real GDP growth is in great proportion explained by the technology shock in the non-
durable sector, as well as monetary policy shocks. Inflation, in contrast, is mainly in-
fluenced by monetary policy shocks. The latter is expected since most of the analysis
covers the “Great Moderation” period. The housing shocks, both supply and demand,
play a relevant part describing the swings in the housing market. Real residential invest-
ment growth is mainly driven by the technology shock in the durable sector. Whereas,
the housing preference shock explains real house price growth by directly affecting the
marginal utility of housing for both agents. Darracq Paries and Notarpietro (2008) report
similar results in both the US and the euro area.

The results found here do not show significant differences to the rational case, nor to
the diagnostic model with a twelve-quarters reference as shown in the Appendix. This
suggests that shocks impact the economy in similar ways as in DE as in RE, however,

19Figures 12 and 13 in Appendix 8.5 show the same figure for the other two estimated models.
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the amplification of these effects is driven by more volatile expectations inherent to the
DE framework.

5.3 Impulse response function analysis

The following sections analyse the impact of the four shocks under the three estimated
models using impulse responses. The responses are in log deviations from the steady
state. I assume a 1% standard deviation shock in both durable and non-durable sector,
as well as for the preference shock. The monetary shock, on the other hand, has a size
of 25 basis points.

5.3.1 Effects of a non-durable goods productivity shock

Figure 5 displays the impulse responses to a positive productivity shock in the non-durable
goods sector. The direction is as expected under RE. The shock increases labour and
capital productivity, resulting in higher production (panel A) and consumption (panel
B). Inflation decreases (panel C) as re-optimising firms adjust their prices in response to
the fall in marginal cost. The central bank lowers the nominal interest rate (panel D),
but the real interest rate increases (panel E). This has a positive effect on house prices
(panel F) as they initially jump and gradually converge back to a steady state. Loans
(panel H) exhibit a U-shaped response due to the behaviour of the interest rate, which
influences two forces: patient households willing to lend and impatient households willing
to borrow. Housing investment (panel G) reacts positively, driven by the increment in
house prices.

In contrast, the responses under both DE frameworks are characterised by initial over-
reactions, longer persistence and more pronounced fluctuations. The initial over-reactions
are generated through the extrapolation of the shock and are common to both approaches.
However, the persistence and pronounced fluctuations are more specific to each frame-
work. In the DE model with a one-quarter reference, the model’s rigidities propagate the
initial overreaction throughout the economy. On the other hand, the DE model with a
twelve-quarters slow-moving reference exhibits more pronounced ups and downs due to
the longer span memory in their expectation formation process.

Agents misconceiving the shock to be an ARMA(1,1) or ARMA (1,12) generate optimism
about their productivity in the future. As a result, households will assign higher prob-
ability to a scenario in which they are richer, leading to demand pressure (panel A and
panel B). Firms experiencing higher labour costs will hire less workers, and thus decrease
their marginal cost. This is reflected in the drop in domestic prices (panel C), firms cut
prices more since they might not be able to re-optimise in the future. The central bank
lowers the interest rate (panel D) by a larger amount when the diagnostic agent reference
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Figure 4: Historical shock decomposition under DE model with distant memory.
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Figure 5: Impulse responses to non-durable goods productivity shock .
Note: The blue dashed line represents the responses when agents have rational expectations. The solid
red line illustrates the impulse responses when agents have DE with a 3-year memory recall, while the

black dotted line DE with the last quarter as reference.

is the most recent past as its Taylor rule reacts more strongly to deviations in inflation.
These two forces are the core of the noticeable difference in the real interest rate response
(panel E). Households extrapolate current surprise disinflation into the future, i.e. they
expect inflation to further decrease. However, since the opposite happens, agents realise
about their mistake, and so does the central bank, which hikes nominal interest rates,
creating a boom-bust pattern in the real interest rate as L’Huillier et al. (2024). This
alters the loans impulse response shape (panel H), as now impatient households will be
more willing to borrow against their house value. This additional liquidity, puts pressure
in house prices (panel F). They exhibit a boom-bust pattern which aligns with histori-
cal interpretations of bubbles, as suggested by Gelain et al. (2012), but this paper goes
one step further by incorporating a micro and psychologically founded belief formation
model.20 Finally, this stimulates higher housing investment (panel G).

5.3.2 Effects of a housing sector productivity shock

Impulse responses to a positive productivity shock in the durable goods sector are shown
in Figure 6. The impact primarily affects variables related to the housing market. Hous-
ing investment exhibits a positive response (panel G) due to the increased productivity of
capital and labour in this sector. This, in turn, leads to a higher housing supply, resulting

20Greenspan (2002) defines: “Bubbles are often precipitated by perceptions of real improvements in
the productivity and underlying profitability of the corporate economy. But as history attests, investors
then too often exaggerate the extent of the improvement in economic fundamentals. Human psychology
being what it is, bubbles tend to feed on themselves, and booms in their later stages are often supported
by implausible projections of potential demand.”
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in a quite persistent decline in house prices (panel F). These movements affects consump-
tion of non-durable goods (panel B) as there is a reallocation of resources, and a fall in
annualized inflation (panel C) and nominal interest rate. GDP (panel A), nevertheless,
is positively driven by the housing sector.

Figure 6: Impulse responses to a housing sector productivity shock .
Note: The blue dashed line represents the responses when agents have rational expectations. The solid
red line illustrates the impulse responses when agents have DE with a 3-year memory recall, while the

black dotted line DE with the last quarter as reference.

In comparison to the RE case, the DE models have a similar response, in magnitude,
of housing investment (panel G). As the diagnostic agent believes that this TFP shock
is more persistent than it actually is, they overestimate the future productivity of the
housing sector and anticipate a higher housing supply. Consequently, they initially over-
react, leading to a more pronounced decline in house prices compared to the rational
case (panel F). This overreaction is stronger for the DE model with the recent quarter
as reference. However, as agents realise that their beliefs are inconsistent with the true
process of the shock, house prices correct and converge faster to steady state. In fact,
this follows from households’ disappointment, which result in less residential investment
under DE compared to RE.

5.3.3 Effects of a tightening monetary policy

Turning to Figure 7, it illustrates the impulse responses of a tightening monetary policy
shock. The direction under RE is as expected. The shock depresses the economy resulting
in a negative deviation of GDP (panel A) and consumption (panel B) from their steady
state. Inflation decreases (panel C) and the central bank reacts to these movements
in output and inflation by lowering the nominal interest rate (panel D). However, the
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Figure 7: Impulse responses to monetary policy shock .
Note: The blue dashed line represents the responses when agents have rational expectations. The solid
red line illustrates the impulse responses when agents have DE with a 3-year memory recall, while the

black dotted line DE with the last quarter as reference.

decrease in inflation exceeds the adjustment in the nominal interest rate, resulting in a
positive real interest rate (panel E). This has a negative effect in house prices (panel
F) since mortgages for impatient households become more expensive (panel H). This, in
turn, depresses housing demand and housing investment (panel G), as the increased cost
of capital impact investment decisions.

When agents are diagnostic, the impulse responses exhibit some distinct features. The
fall in GDP is relatively bigger and more persistent than in RE (panel A). This is because
agents believe that the central bank will further tighten the monetary policy in the future.
This explains the stronger initial fall in prices (panel C), which leads to stronger reactions
in the nominal interest rate (panel D), and therefore slightly smaller real interest rate
(panel E). Agents mistakenly expect the variables to follow this path, but as events unfold
and there are no further surprises in monetary policy, they adjust their expectations.
This explains the sudden rise in the nominal interest rate and the jump in inflation,
which are more pronounced in the diagnostic model with agents who have short memory.
Moreover, the behaviour of consumption (panel B) follows the Euler equation, and the
u-shaped reaction is more persistent. A similar story holds for loans. The change in the
real interest rate, as well as the decline in house prices (panel F), impacts the borrowing
constraint of the impatient household. It decreases her collateral and so does her ability
to obtain funds (panel H). This drags the housing demand and amplifies the fall in house
prices. The posterior recovery follows from the relaxation of the impatient household’s
collateral constraint. De Stefani (2021) reports empirical results consistent with this.
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5.3.4 Effects of a preference housing shock

Figure 8 provides details on the impact of the housing preference shock. Under RE, this
shock shifts households’ taste towards the housing sector as it directly hits the marginal
utility of housing for both agents. This puts pressure on house prices (panel F). Al-
though higher prices would make housing less desirable overall, the impatient households
experience a loosing in their collateral constraint (panel H), reflecting their willingness to
leverage their financial position, as they need to finance higher housing costs. However,
this effect is insufficient to offset the decline in housing demand from patient agents.
Additionally, the rise in interest rates (panel D and panel E) diverts funds away from the
housing sector, causing a delayed increase in residential investment (panel G). This, once
realised, stimulates GDP (panel A).

Figure 8: Impulse responses to a housing preference shock.
Note: The blue dashed line represents the responses when agents have rational expectations. The solid
red line illustrates the impulse responses when agents have DE with a 3-year memory recall, while the

black dotted line DE with the last quarter as reference.

The responses under both DE scenarios are in the same direction as in RE, although
clearly amplified. When agents are diagnostic, after the shock hits, they expect further
pressures in the housing market, anticipating house prices to rise even higher. This
leads to an initial overreaction in house prices (panel F), under both short and long-
term memory. Such significant shift impacts other variables in the economy in the same
way as under rationality. Impatient households experience a greater loosening of their
collateral constraint, but the stronger decline in patient households’ housing demand,
combined with the hike in interest rates, diverts more funds away from the housing sector
(panel G). The main difference, however, occurs after agents realise that the true shock
process is AR(1) rather than ARMA(1,1) or ARMA(1,12). In the first case, the rebound
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happens faster as agents rapidly revise their expectations, while in the second case, it
takes longer. This difference is evident in the impulse responses for house prices, where
the drop in period 2 is more pronounced when the reference group is the most recent past.
Another key difference lies in the persistence and fluctuations of the responses. The initial
overreaction, particularly when the comparison group spans twelve-quarters, takes longer
to die out. Gandré (2022) suggests that these movements originate in households tastes
swings, directly affecting intra-temporal and inter-temporal trade-offs.

6 Counterfactual analysis

In this section, I conclude the analysis presenting a counterfactual study where the ex-
pectations channel in the DE models is shut. I evaluate an alternative scenario in which
agents from the estimated DE models become rational. I set the diagnostic parameter
and the weights on past quarters to zero, while keeping all other parameters fixed.

Table 5: Real House price growth second-order moment

Data DE DE RE Ref:Q12 RE Ref:Q1
Ref:Q12 Ref:Q1 Counterfactual Counterfactual

Volatility relative to GDP
Real House price growth 2.9896 2.4381 3.1882 1.8877 2.4992

Note: House price growth rate is obtained from averaging over ten thousand simulations of hundred
and forty four observations each.

The results in Table 5 suggest that the rational counterfactual models struggles to am-
plify house price volatility. Both counterfactual RE models produce a measure that is
22% lower than their diagnostic counterpart. Notably, the RE Ref: Q1 counterfactual
generates a higher measure since the estimated size of the preference shock is higher than
in the case of twelve-quarters as reference (7.23% vs 5.35%). This finding underscores
the significant role that DE plays in driving housing market dynamics. In another words,
around a third of the housing market volatility originates from the expectations channel,
through DE.

7 Concluding remarks

This paper examines expectations as a central driver of housing market volatility by inte-
grating Diagnostic Expectations (DE) with both short-term and long-term memory into
a TANK model featuring housing and banking sectors. The results, based on diagnos-
tic parameter and reference period weight estimates, validate the DE model empirically.
Evidence favours the model in which diagnostic agents consider only the immediate past
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quarter when forming beliefs. It successfully accounts for economic fluctuations, particu-
larly in the housing market, when conditioned on less volatile shocks. Specifically, the DE
model explains housing price and quantity dynamics with a preference shock innovation
size two-thirds of that under RE. This suggests DE as a more comprehensive alterna-
tive to the “catchall of all the unmodeled disturbances that can affect housing demand”
(Iacoviello & Neri, 2010, p. 150).

Another noteworthy result is that, when the expectations channel in the DE models is
shut down the models fail to generate the higher volatility in house prices relative to real
GDP growth observed in the data. Together with the previous result, this suggests that
DE drive cyclical dynamics in the housing market and, given the sector’s significance in
household decision-making, underline the need to consider DE in policy recommendations.

Future work would enhance the analysis. One direction I plan to explore is allowing
the banking sector to intermediate between households, which would provide insights
about the role of expectations in the housing credit market. Another possible extension
would be to allow for heterogeneity in the degree of diagnosticity to capture diverse belief
formation across households.
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8 Appendix

8.1 Model Derivations

8.1.1 Households

8.1.1.1 Patient

Lp = E0

∞∑
t=0

βtp


[
log(cp,t − γcp,t−1) + Γtνhp log(hp,t) − νnp

n1+φ
p,t

1 + φ

]
−

λp,t

[
cp,t + qt[hp,t − (1 − δh)hp,t−1] + dBt + dlt −

dBt−1R
d
t−1

πt
−
dlt−1R

l
t−1

πt
−

wtnp,t − Πf,t − ΠB,t

]
(74)

The optimal conditions of this Lagrangian with respect to cp,t, np,t, hp,t, dBt and dlt are:

∂Lp

∂cp,t
: λp,t = 1

(cp,t − γcp,t−1)
− βpγ

(cp,t+1 − γcp,t)
. (75)

∂Lp

∂np,t
: νnp n

φ
p,t = wtλp,t. (76)

∂Lp

∂hp,t
: λp,tqt =

Γtνhp
hp,t

+ βpEt
[
(1 − δh)qt+1λp,t+1

]
. (77)

∂Lp

∂dBt
: λp,t = βpEt

[
λp,t+1

Rd
t

πt+1

]
. (78)

∂Lp

∂dlt
: λp,t = βpEt

[
λp,t+1

Rl
t

πt+1

]
. (79)
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8.1.1.2 Impatient

Li =E0

∞∑
t=0

βti


[
log(ci,t − γci,t−1) + Γtνhi log(hi,t) − νni

n1+φ
i,t

1 + φ

]
−

λi,t

[
ci,t + qt(hi,t − (1 − δh)hi,t−1) + lt−1R

l
t−1

πt
− lt − wtni,t

]
−

µi,t

[
lt − χ

Rl
t

(qt+1πt+1)hi,t
]

(80)

The optimal conditions of this Lagrangian with respect to ci,t, ni,t hi,t and lt are:

∂Li

∂ci,t
: λi,t = 1

(ci,t − γci,t−1)
− βiγ

(ci,t+1 − γci,t)
. (81)

∂Li

∂ni,t
: νni n

φ
i,t = wtλi,t. (82)

∂Li

∂hi,t
: λi,tqt = Γtνhi

hi,t
+ βiEt

[
(1 − δh)qt+1λi,t+1

]
+ µi,t

χ

Rl
t

Et[qt+1πt+1], (83)

∂Li

∂lt
: λi,t − µi,t = βiEt

[
λi,t+1

Rl
t

πt+1

]
(84)

8.1.2 Firms

8.1.2.1 Wholesale firms

max
NW

t ,KW
t

Πw,f
t+1 = [Pm,tY W

t + (1 − δk)qKt−1K
W
t−1 −RK

t q
K
t−1K

W
t − wtN

W
t

]
(85)

subject to

Y W
t = AtN

W
t

1−α
KW
t−1

α
, (86)

The first order conditions with respect to NW
t and KW

t are:

wt = Pm,t(1 − α)At

KW
t−1

NW
t

α, (87)

qKt−1R
K
t = rKt + (1 − δk)qKt , (88)
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where rKt = Pm,tαAt

(
NW

t

KW
t−1

)1−α
is the rental rate of capital. Obtaining the ratio NW

t

KW
t−1

from the wage and rental rate expressions and equating them, I obtain an equation for
Pm,t, which turns out to be the marginal cost, therefore:

mct = 1
At

 wt
1 − α

1−αrKt
α

α. (89)

8.1.2.2 Final good firm

The final good producer purchases goods re-packaged by the retailers and aggregates
them according to a Dixit-Stiglitz production technology. After it, they sell the final
product in a perfect competitive market at the price Pt.

Yt =
[∫ 1

0
yt(j)

ϵ−1
ϵ dj

] ϵ
ϵ−1

(90)

Yt represents the final good, yt(j) denotes the j′th retailer input. This firm’s profit
maximisation is a static problem and can be stated as:

max
yt(j)

Pt

[∫ 1

0
yt(j)

ϵ−1
ϵ dj

] ϵ
ϵ−1

−
∫ 1

0
pt(j)yt(j)dj, (91)

where Yt was replaced using its definition. The first order condition of this decision
problem by choosing {yt(j)}1

j=0 is given by:

Pt
ϵ

ϵ− 1

[∫ 1

0
yt(j)

ϵ−1
ϵ dj

] ϵ
ϵ−1 −1 ϵ− 1

ϵ
yt(j)

ϵ−1
ϵ

−1 = Pt(j),∀j

⇒ Pt

[∫ 1

0
yt(j)

ϵ−1
ϵ dj

] 1
ϵ−1

yt(j)− 1
ϵ = Pt(j)

⇒ yt(j)− 1
ϵ =

(
Pt(j)
Pt

) [∫ 1

0
yt(j)

ϵ−1
ϵ dj

]− 1
ϵ−1

⇒ yt(j) =
(
Pt(j)
Pt

)−ϵ [∫ 1

0
yt(j)

ϵ−1
ϵ dj

]− ϵ
ϵ−1

. (92)

Which after using the definition of Yt, the demand equation for each input turns out to
be:
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yt(j) =
(
Pt(j)
Pt

)−ϵ

Yt. (93)

Since this final good producing firm acts in a competitive market, it makes zero profit.
Replacing the demand equation in the maximisation problem, I obtain:

PtYt =
∫ 1

0
Pt(j)Yt(j)dj

⇒ PtYt =
∫ 1

0
Pt(j)

(
Pt(j)
Pt

)−ϵ

Ytdj

⇒ PtYt = P ϵ
t Yt

∫ 1

0
Pt(j)1−ϵdj

P 1−ϵ
t =

∫ 1

0
Pt(j)1−ϵdj. (94)

Rearranging this equation yields an expression of the price of the final good as a function
of the intermediate inputs’ prices, i.e. an aggregate price index:

Pt =
[∫ 1

0
Pt(j)1−ϵdj

] 1
1−ϵ

(95)

8.1.2.3 Retailers firms

In the presence of price rigidity à la Calvo, retailers will be able to change their price
with a probability (1−θ), while with a probability θ they will not. To determine the new
price P ∗

t (j), retailers’ maximise:

Vt(j) = Et
∞∑
i=0

(βpθ)i
{
λp,t+i
λp,t

[(
P ∗
t (j)
Pt+i

−mct+i

)(
P ∗
t (j)
Pt+i

)ϵ
Yt+i

] }
.

The first order condition of this problem is:

∂Vt(j)
∂P ∗

t (j) : Et
∞∑
i=0

(βθ)i
λp,t+iλp,t

(P ∗
t (j)
Pt+i

)−ϵ

− ϵ

(
P ∗
t (j)
Pt+i

−mct+i

)(
P ∗
t (j)
Pt+i

)−(ϵ+1)
 Yt+i
Pt+i

 = 0

(96)
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Et
∞∑
i=0

(βθ)iλp,t+i
λp,t

[
(1 − ϵ)(P ∗

t (j))−ϵP ϵ−1
t+i + ϵmct+i(P ∗

t (j))−(ϵ−1)P ϵ
t+i

]
Yt+i = 0

Et
∞∑
i=0

(βθ)tλp,t+i
λp,t

[
(1 − ϵ)(P ∗

t (j))−ϵP ϵ−1
t+i Yt+1 + ϵmct+iP

ϵ
t+iYt+i

]
= 0

After rearranging, the result of this maximisation problem determines that retailer firms,
which have obtained a successful draw, will set their price as a constant mark-up on
an expression related to their expected discounted nominal total costs relative to an
expression related to their expected discounted real output.

P ∗
t (j) = ϵ

ϵ− 1

[
Et
∑∞
i=0(βpθ)iλp,t+imct+iP ϵ

t+iYt+i
Et
∑∞
i=0(βpθ)iλp,t+iP ϵ−1

t+i Yt+i

]
. (97)

The above equation does not depend on j, this implies that every retailer firm that is
able to set its price in period t will choose the same price. Moreover, in the limiting case,
with no price rigidity, the firm’s optimal price is a constant markup on real marginal
costs. This expression can be writen in terms of two auxiliary variables, x1,t and x2,t:

π∗
t = ϵ

ϵ− 1
x1,t

x2,t
, (98)

where the auxiliary variables take the following recursive forms:

x1,t = λp,tmctYt + θβpEt(πt+1)ϵx1,t+1. (99)

x2,t = λp,tYt + θβpEt(πt+1)ϵ−1x2,t+1. (100)

Next, I define an auxiliary variable νjt for the measure of price dispersion:

νjt =
∫ 1

0

(
Pt(j)
Pt

)−ϵ

dj. (101)

Making use of the fact that a proportion of firms are able to reset their price, while others
are not, the price dispersion can be re-written as:

νjt =
∫ 1−θ

0

(
P ∗
t (j)
Pt

)−ϵ

dj +
∫ 1

1−θ

(
Pt−1(j)
Pt

)−ϵ

dj (102)
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To obtain an expression of the price dispersion in terms of inflation rate, I multiply and
divide by powers of Pt−1 where necessary, given:

νjt =
∫ 1−θ

0

(
P ∗
t (j)
Pt

)−ϵ

dj +
∫ 1

1−θ

(
Pt−1(j)
Pt−1

)−ϵ (
Pt−1

Pt

)−ϵ
dj.

Using the definition of π∗
t , and of gross inflation πt, the previous expression becomes:

νjt = (1 − θ)(π∗
t )−ϵ + (πt)ϵ

∫ 1

1−θ

(
Pt−1(j)
Pt−1

)−ϵ

dj

where the last term, using the definition of the auxiliary variable, is equal to θνjt−1.
Replacing it yields:

νjt = (1 − θ)(π∗
t )−ϵ + (πt)ϵθνjt−1. (103)

8.1.2.4 Capital good firms

The capital good producers maximise:

E0

∞∑
i=0

βtp
λp,t+i
λp,t

[
qKt K

W
t − qKt (1 − δk)KW

t−1 + rK,ht Kh
t − It

]
, (104)

subject to the law of motion of total capital and the definition of aggregate capital.

Kt = (1 − δk)Kt−1 + [1 − ψ

2 (It/It−1 − 1)2]It, (105)

Kt = KW
t +Kh

t . (106)

I write the problem in Lagrangian form as:

LK = E0

∞∑
i=0

βip
λp,t+i
λp,t


[
qKt K

W
t − qKt (1 − δk)KW

t−1 + rK,ht Kh
t − It

]
−

λK,t

[
KW
t +Kh

t − (1 − δk)(KW
t−1 +Kh

t−1) −
(

1 − ψ

2
( It
It−1

− 1
)2
)
It

]
(107)

The optimality conditions with respect to KW
t , Kh

t and It are:
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∂LK

∂KW
t

: qKt − βp
λp,t+1

λp,t
(1 − δk)qKt+1 = λK,t − βp

λp,t+1

λp,t
(1 − δk)λK,t+1. (108)

∂LK

∂Kh
t

: rK,ht = λK,t − βp
λp,t+1

λp,t
(1 − δk)λK,t+1. (109)

∂LK

∂It
: 1 = λK,t

[
1 − ψ

2

(
It
It−1

− 1
)2

− ψ
(
It
It−1

− 1
)(

It
It−1

)]
+

βpψEt
[
λp,t+1

λp,t
λK,t+1

(
It+1

It

)2(It+1

It
− 1

)]
,

(110)

8.1.2.5 Housing firms

This firm’s profit maximisation is a static problem and can be stated as:

max
Nh

t ,K
h
t−1

Πh
t = [qtIht − rK,ht Kh

t−1 − wtN
h
t

]
, (111)

subject to

Iht = ZtN
h
t

1−µhKh
t−1

µh , (112)

After replacing the production function in the profit expression, I re-write the problem
as following:

max
Nh

t ,K
h
t−1

Πh
t = [qt(ZtNh

t

1−µhKh
t−1

µh) − rK,ht Kh
t−1 − wtN

h
t

]
, (113)

The first order conditions of this maximisation problem with respect to Nh
t and Kh

t are:

wt = (1 − µh)qt
Iht
Nh
t

. (114)

rK,ht = µhqt
Iht
Kh
t

. (115)

8.1.3 Banks

To solve the optimisation problem of bank’s τ , I write it in a Bellman equation form as:
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V B
τ,t(NWi,t) = βBEt

λp,t+1

λp,t
{(1 − σ)NWτ,t + σmax V B

τ,t+1(NWτ,t+1)}, (116)

which is subject to:

qKt Sτ,t = NWτ,t +Dτ,t,

NWτ,t+1 =
(
RK
t+1 −Rd

t

)
Sτ,t +Rd

tNWτ,t,

V B
τ,t ≥ ζ(qkt,fSτ,t).

I start guessing that the value function V B
τ,t is linear in NWτ,t, V B

τ,t = νBt NWτ,t, where νBt
depends only on aggregate quantities. Then, I replace the balance sheet in the evolution
of the net-worth equation, which then I plug in the Bellman equation. The problem now
is to maximise the new Bellman equation subject to the incentive constraint. I re-express
bank’s i problem using the Lagrangian as:

LB =
[
(1 − σ + σνBt+1)

((
RK
t+1 −Rd

t

)
qKt Sτ,t +Rd

tNWτ,t

)]
(1 + ξt) − ξt(ζ(qKt Sτ,t)), (117)

where ξt is the Lagrange multiplier with respect to the incentive constraint, and the first
order condition with respect to Sτ,t and NWτ,t are:

∂LB

∂Sτ,t
: ξtζ

(1 + ξt)
= Et

[
(1 − σ + σνbt+1)

(
RK
t+1 −Rd

t

)]
. (118)

∂LB

∂NWτ,t

: 1
(1 + ξt)

= Et
[
(1 − σ + σνbt+1)

(
Rd
t

πt+1

)]
. (119)

Defining the adjusted marginal value of the net worth as Ωτ,t+1 = (1 − σ + σνbt+1), the
value function can be re-expressed as:

V B
τ,t = βBEt

λp,t+1

λp,t

{
Ωτ,t+1

[(
RK
t+1 −Rd

t

)
qKt Sτ,t +Rd

tNWτ,t

]}

Multiplying and dividing this expression by NWτ,t I obtain:

V B
τ,t = βBEt

λp,t+1

λp,t

{
Ωτ,t+1

[(
RK
t+1 −Rd

t

)
ϕt +Rd

t

]}
NWτ,t, (120)

where ϕt = qK
t Sτ,t

NWτ,t
and the term between curly brackets is νbt . Therefore, if the incentive

constraint is binding, i.e. νbt = ζϕt, replacing the previous result:
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βBEt
λp,t+1

λp,t

{
Ωτ,t+1

[(
RK
t+1 −Rd

t

)
ϕt +Rd

t

]}
= ζϕt.

Which, after rearranging, implies that the leverage is equal to:

ϕt =
βBEt λp,t+1

λp,t
Ωτ,t+1R

d
t

ζ − βBEt λp,t+1
λp,t

Ωτ,t+1

(
RK
t+1 −Rd

t

) . (121)

8.2 Equilibrium conditions

The model is characterised by 47 equations, with 43 endogenous variables {λp,t, cp,t, np,t,
hp,t, d

B
p,t, d

l
p,t, λi,t, ci,t, ni,t, hi,t, li,t, µi,t, It, Kt, K

W
t , K

h
t , λK,t, q

K
t , I

h
t , Ht, qt, r

K
t , r

K,h
t , wt, R

d
t , R

l
t,

RK
t ,mct, Nt, N

W
t , Nh

t , Ct, Yt, x1,t, x2,t, πt, π
∗
t , ν

j
t , ϕt,Ωt, NWt, Dt, St} and 4 exogenous shocks

{At, Zt,Mt,Γt}.

8.2.1 Patient Households

λp,t = 1
(cp,t − γcp,t−1)

− βpγ

(cp,t+1 − γcp,t)
. (122)

νnp n
φ
p,t = wtλp,t. (123)

λp,tqt =
Γtνhp
hp,t

+ βpEt
[
(1 − δh)qt+1λp,t+1

]
. (124)

λp,t = βpEt
[
λp,t+1

Rd
t

πt+1

]
. (125)

λp,t = βpEt
[
λp,t+1

Rl
t

πt+1

]
. (126)

cp,t+qt[hp,t− (1−δh)hp,t−1]+dBt +dlt = dBt−1R
d
t−1

πt
+ dlt−1R

l
t−1

πt
+wtnp,t+Πf,t+ΠB,t. (127)

8.2.2 Impatient Households

λi,t = 1
(ci,t − γci,t−1)

− βiγ

(ci,t+1 − γci,t)
. (128)

νni n
φ
i,t = wtλi,t. (129)

λi,tqt = Γtνhi
hi,t

+ βiEt
[
(1 − δh)qt+1λi,t+1

]
+ µi,t

χ

Rl
t

Et[qt+1πt+1]. (130)

λi,t − µi,t = βiEt
[
λi,t+1

Rl
t

πt+1

]
, (131)
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ci,t + qt(hi,t − (1 − δh)hi,t−1) + lt−1R
l
t−1

πt
= wtni,t + lt. (132)

lt ≤ χ

Rl
t

Et[qt+1πt+1]hi,t. (133)

8.2.3 Goods firms

Y W
t = AtN

W
t

1−α
KW
t−1

α
. (134)

νjt = (1 − θ)(π∗
t )−ϵ + (πt)ϵθνjt−1. (135)

mct = 1
At

 wt
1 − α

1−αrKt
α

α. (136)

rKt
wt

= αNW
t

(1 − α)KW
t−1

(137)

qKt−1R
K
t = rKt + (1 − δk)qKt . (138)

I define two auxiliary variables to re-express pricing as:

π∗
t = ϵ

ϵ− 1
x1,t

x2,t
. (139)

These variables have a recursive representation given by:

x1,t = λp,tmctYt + θβpEt(πt+1)ϵx1,t+1. (140)

x2,t = λp,tYt + θβpEt(πt+1)ϵ−1x2,t+1. (141)

π1−ϵ
t = θ + (1 − θ) (π∗

t )
1−ϵ . (142)

8.2.4 Housing firms

Iht = ZtN
h
t

1−µhKh
t−1

µh , (143)

rK,ht

wt
= µhN

h
t

(1 − µh)Kh
t−1

(144)

8.2.5 Capital firms

qKt − βp
λp,t+1

λp,t
(1 − δk)qKt+1 = λK,t − βp

λp,t+1

λp,t
(1 − δk)λK,t+1. (145)
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rK,ht = λK,t − βp
λp,t+1

λp,t
(1 − δk)λK,t+1. (146)

1
λK,t

= 1− ψ

2

(
It
It−1

−1
)2

−ψ
(
It
It−1

−1
)(

It
It−1

)
+βpψEt

[
λp,t+1

λp,t
λK,t+1

(
It+1

It

)2(It+1

It
−1

)]
.

(147)

8.2.6 Banks

Ωτ,t+1 = (1 − σ + σζϕt). (148)

qKt St = ϕtNWt. (149)

NWt = (σ + ω)(RK
t q

K
t−1St−1) − σRd

t−1Dt−1. (150)

ϕt =
βBEt λp,t+1

λp,t
Ωτ,t+1R

d
t

ζ − βBEt λp,t+1
λp,t

Ωτ,t+1

(
RK
t+1 −Rd

t

) . (151)

qKt St = NWt +Dt. (152)

8.2.7 Central Bank

Rd
t = (1/βp)

πt
π̄

ωπ
 GDPt
GDPt−1

ωy

Mt, (153)

8.2.8 Aggregation

Ct = (1 − n)cp,t + (n)ci,t (154)

Nt = (1 − n)np,t + (n)ni,t. (155)

Ht = (1 − n)hp,t + (n)hi,t (156)

Nt = NW
t +Nh

t . (157)

Yt = Y W
t

νjt
(158)

GDPt = Ct + It + q̄Iht . (159)

Dt = (1 − n)dBt (160)

(1 − n)dlt = nlt (161)

St = KW
t (162)

Kt = (1 − δk)Kt−1 + [1 − ψ

2 (It/It−1 − 1)2]It (163)

Kt = KW
t +Kh

t (164)
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Iht = Ht − (1 − δh)Ht−1 (165)

8.2.9 Shocks

log(At+1) = ρAlog(At) + σϵAϵ
A
t+1. (166)

log(Zt+1) = ρZ log(Zt) + σϵZϵ
Z
t+1. (167)

log(Mt+1) = ρM log(Mt) + σϵM ϵ
M
t+1. (168)

log(Γt+1) = ρΓlog(Γt) + σϵΓϵ
Γ
t+1. (169)

8.3 Steady State

8.3.1 Patient

Rd = 1
βp
. (170)

λp = (1 − βpγ)
(1 − γ)cp

. (171)

νnp n
φ
p = wλp. (172)

1
hpλpq

= 1 − βp(1 − δh)
νhp

. (173)

8.3.2 Impatient

λi = (1 − βiγ)
(1 − γ)ci

. (174)

νni n
φ
i = wλi. (175)

µi = (1 − βiR
l)λi. (176)

1
hiλiq

=
1 − βi(1 − δh) − (1 − βiR

l) χ
Rl

νhi
. (177)

ci = wni + (1 −Rl)l − qhiδh. (178)

lRl

χ
= qhi. (179)

8.3.3 Goods firms

rK

w
= αNW

(1 − α)KW
. (180)

RK = rK + (1 − δk). (181)
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mc =
 w

1 − α

1−αrK
α

α. (182)

Y

KW
=
NW

KW

1−α

. (183)

x1 = λpmcY

1 − θβ
. (184)

x2 = λpY

1 − θβ
. (185)

π∗ = ϵ

ϵ− 1
x1

x2
. (186)

π1−ϵ = θ + (1 − θ) (π∗)1−ϵ . (187)

νj = (1 − θ)(π∗)−ϵ

1 − θπϵ
. (188)

8.3.4 Housing firms

Ih = Nh1−µhKhµh . (189)

rK,h

w
= µhN

h

(1 − µh)Kh
. (190)

8.3.5 Capital firms

qK = 1. (191)

rK,h = 1 − βp(1 − δk). (192)
1
λK

= 1. (193)

8.3.6 Banks

Ω = (1 − σ + σζϕ). (194)
NW

KW
= 1
ϕ
. (195)

NW

KW
= 1 − D

KW
. (196)

NW

KW
=

(σ + ω)RK − σ
βp

1 − σ
βp

= 1
ϕ
. (197)

ϕ = βpΩRd

ζ − βpΩ(RK −Rd) . (198)
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8.3.7 Central Bank

Rd = 1
βp
. (199)

8.3.8 Aggregation

C = (1 − n)cp + (n)ci. (200)

N = (1 − n)np + (n)ni. (201)

H = (1 − n)hp + (n)hi. (202)

N = N f +Nh. (203)

Y = Y W . (204)

GDP = C + I + qIh. (205)

D = (1 − n)dB. (206)

(1 − n)dl = nl. (207)

S = KW . (208)

δk = I

K
. (209)

K = KW +Kh. (210)

δh = Ih

H
. (211)

8.4 Diagnostic probability density function

To obtain the diagnostic probability density function of the economy’s state, I use the
assumption that it follows an AR(1) process, and that a standard probability density
function of a normally distributed variable xt+1 is:

f(xt+1|xt) = 1
σ

√
2πe

− (xt+1−ρxt)2

2σ2 .

Recalling the definition of the diagnostic probability density function under a slow moving
reference group fϕ(xt+1) =

f(xt+1|xt = ρx̄t)

[∏S
s=1

f(xt+1|ρsx̄t+1−s)
f(xt+1|ρs+1x̄t−s)

]αs


ϕ

Z,, and using the previous expression:

fϕ(xt+1|xt) = 1
σ

√
2π
e− (xt+1−ρx̄t)2

2σ2


 S∏
s=1

1
σ

√
2πe

− (xt+1−ρsx̄t+1−s)2

2σ2

1
σ

√
2πe

− (xt+1−ρs+1x̄t−s)2

2σ2


αs

ϕ

Z, (212)
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Simplifying and rewriting, I obtain:

fϕ(xt+1|xt) = 1
σ

√
2π
e

{
− (xt+1−ρx̄t)2

2σ2 − 1
2σ2 ϕ[

∑S

s=1 αs((xt+1−ρsx̄t+1−s)2−(xt+1−ρs+1x̄t−s)2)]
}
Z. (213)

Let’s expand and re-write the argument of the exponential as:

fϕ(xt+1|xt) = 1
σ

√
2π
exp

− 1
2σ2

{
(x2

t+1 − 2xt+1ρx̄t + (ρx̄t)2)+

ϕ
[ S∑
s=1

αs
(
(x2

t+1 − 2xt+1ρ
sx̄t+1−s + (ρsx̄t+1−s)2)−

(x2
t+1 − 2xt+1ρ

s+1x̄t−s + (ρs+1x̄t−s)2)
)]}Z.

(214)

This can be further expanded and rearranged, after taking 2x as common factor:

fϕ(xt+1|xt) = 1
σ

√
2π
exp

− 1
2σ2

{
x2
t+1 − 2xt+1

[
ρx̄t + ϕ

[
S∑
s=1

αs
(
ρsx̄t+1−s − ρs+1x̄t−s

)]]
+

(ρx̄t)2 + ϕ

[
S∑
s=1

αs
(
(ρsx̄t+1−s)2 − (ρs+1x̄t−s)2

)]}Z,
(215)

where the constant Z is given by:

Z = exp

− 1
2σ2

{
− ϕ

[
S∑
s=1

αs
(
(ρsx̄t+1−s)2 − (ρs+1x̄t−s)2

)]
+ 2ρx̄tϕ

[
S∑
s=1

αs
(
ρsx̄t+1−s − ρs+1x̄t−s

)]

+ ϕ2
[
S∑
s=1

αs
(
ρsx̄t+1−s − ρs+1x̄t−s

)]2 }.
(216)

After some algebra, the diagnostic pdf is equal to:

fϕ(xt+1|xt) = 1
σ

√
2π
e

− 1
2σ2

{
[xt+1−(ρx̄t+ϕ

∑S

s=1 αs(ρsx̄t+1−s−ρs+1x̄t−s))]2
}
. (217)
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Which, as Gennaioli and Shleifer (2018) states, contains the kernel of a normal distribu-
tion with a distorted mean and the same variance. Therefore:

Eϕt (xt+1) = Et(xt+1) + ϕ
S∑
s=1

αs [Et+1−s(xt+1) − Et−s(xt+1)] . (218)

Expression (217) can be extended in order to re-write it in terms of the realisations of
the shocks:

fϕ(xt+1|xt) =
1

σ
√

2πexp

− 1
2σ2

{
x2
t+1 − 2xt+1

[
ρx̄t + ϕ

∑S
s=1 αs (ρsx̄t+1−s − ρs+1x̄t−s)

]
+ (ρx̄t)2+

2ρx̄tϕ
[∑S

s=1 αs (ρsx̄t+1−s − ρs+1x̄t−s)
]

+ ϕ2
[∑S

s=1 αs (ρsx̄t+1−s − ρs+1x̄t−s)
]2 },

which can be rewritten using the AR(1) process definition as:

fϕ(xt+1|xt) = 1
σ

√
2πexp

− 1
2σ2

{
x2
t+1 − 2xt+1

[
ρx̄t + ϕ

∑S
s=1 ρ

sαsϵt+s−1
]

+ (ρx̄t)2+

2ρx̄tϕ
[∑S

s=1 ρ
sαsϵt+s−1

]
+ ϕ2

[∑S
s=1 ρ

sαsϵt+s−1
]2,

This can be rearrange as:

fϕ(xt+1|xt) = 1
σ

√
2π
e

− 1
2σ2

{
[xt+1−(ρx̄t+ϕ

∑S

s=1 ρ
sαsϵt+s−1)]2

}
. (219)

Again, this function contains the kernel of a normal distribution with a distorted mean:

Eϕt (xt+1) = ρxt + ϕ
S∑
s=1

ρsαsϵt+s−1. (220)

This way of modelling DE with slow moving reference embeds the one from Bianchi et al.
(2024) as a special case. This occurs when α1 = 1 and the rest are such that ∑S

s=1 α
′
s = 1,

where α′
s = (αs − αs+1). In that case, the diagnostic expectation will be defined as:

Eϕt (Xt+1) = Et(Xt+1) + ϕ [Et(Xt+1) − Ert (Xt+1)] , (221)

where Ert (Xt+1) = ∑S
s=1 α

′
sEt−s(Xt+1)
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8.4.1 Diagnostic distribution using last twelve-quarters as reference

Using the previous result, if the Diagnostic agent form expectations taking into account
the last twelve-quarters, I obtain the following probability density function:

fϕ(xt+1|xt) = 1
σ

√
2πexp

− 1
2σ2

{
x2
t+1 − 2x[ρx̄t +ϕ[ρα1 (x̄t − ρx̄t−1) + ρ2α2 (x̄t−1 − ρx̄t−2) +

ρ3α3 (x̄t−2 − ρx̄t−3) + ρ4α4 (x̄t−3 − ρx̄t−4) + ρ5α5 (x̄t−4 − ρx̄t−5) + ρ6α6 (x̄t−5 − ρx̄t−6) +

ρ7α7 (x̄t−6 − ρx̄t−7) + ρ8α8 (x̄t−7 − ρx̄t−8) + ρ9α9 (x̄t−8 − ρx̄t−9) + ρ10α10 (x̄t−9 − ρx̄t−10) +
ρ11α11 (x̄t−10 − ρx̄t−11) + ρ12α12 (x̄t−11 − ρx̄t−12)] + (ρx̄t)2 + 2ρxtϕ[ρα1 (x̄t − ρx̄t−1) +

ρ2α2 (x̄t−1 − ρx̄t−2) + ρ3α3 (x̄t−2 − ρx̄t−3) + ρ4α4 (x̄t−3 − ρx̄t−4) + ρ5α5 (x̄t−4 − ρx̄t−5) +

ρ6α6 (x̄t−5 − ρx̄t−6) + ρ7α7 (x̄t−6 − ρx̄t−7) + ρ8α8 (x̄t−7 − ρx̄t−8) + ρ9α9 (x̄t−8 − ρx̄t−9) +
ρ10α10 (x̄t−9 − ρx̄t−10) + ρ11α11 (x̄t−10 − ρx̄t−11) + ρ12α12 (x̄t−11 − ρx̄t−12)]+

ϕ2[ρα1 (x̄t − ρx̄t−1) + ρ2α2 (x̄t−1 − ρx̄t−2) + ρ3α3 (x̄t−2 − ρx̄t−3) + ρ4α4 (x̄t−3 − ρx̄t−4) +
ρ5α5 (x̄t−4 − ρx̄t−5) + ρ6α6 (x̄t−5 − ρx̄t−6) + ρ7α7 (x̄t−6 − ρx̄t−7) + ρ8α8 (x̄t−7 − ρx̄t−8) +

ρ9α9 (x̄t−8 − ρx̄t−9) + ρ10α10 (x̄t−9 − ρx̄t−10) + ρ11α11 (x̄t−10 − ρx̄t−11) +

ρ12α12 (x̄t−11 − ρx̄t−12)]2
},

which implies:

Eϕt (x̄t+1) = ρx̄t + ϕ[ρα1(x̄t − ρx̄t−1) + ρ2α2(x̄t−1 − ρx̄t−2) + ρ3α3(x̄t−2 − ρx̄t−3) + ρ4α4(x̄t−3 − ρx̄t−4)

+ ρ5α5(x̄t−4 − ρx̄t−5) + ρ6α6(x̄t−5 − ρx̄t−6) + ρ7α7(x̄t−6 − ρx̄t−7) + ρ8α8(x̄t−7 − ρx̄t−8)

+ ρ9α9(x̄t−8 − ρx̄t−9) + ρ10α10(x̄t−9 − ρx̄t−10) + ρ11α11(x̄t−10 − ρx̄t−11)

+ ρ12α12(x̄t−11 − ρx̄t−12)].
(222)

After using the definition of the AR(1) process:

Eϕt (xt+1) = ρxt + ϕ[(ρα1ϵt + ρ2α2ϵt−1 + ρ3α3ϵt−2 + ρ4α4ϵt−3 + ρ5α5ϵt−4 + ρ6α6ϵt−5

+ ρ7α7ϵt−6 + ρ8α8ϵt−7 + ρ9α9ϵt−8 + ρ10α10ϵt−9 + ρ11α11ϵt−10 + ρ12α12ϵt−11)]
(223)

Thus, agents wrongly perceive the AR(1) shock as an ARMA(1,12).
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8.5 Additional results

8.5.1 Posterior distributions and historical decomposition

This sub-section presents figures showing the posterior distributions from the SMC of the
DE model with twelve-quarters reference, DE model with one-quarter reference, and the
RE model. It also exhibits the historical decomposition for the RE model and the DE
model with twelve-quarters reference.

Figure 9: Posterior distributions diagnostic expectations ref: Q12.
Note: The red dashed line represents the mean of each posterior distribution.

8.6 Definition of data variables

I calibrate the model using quarterly data for the United States. I obtained the data
from the Board of Governors of the Federal Reserve System and the Bureau of Economic
Analysis, using the National Accounts and Flow of Funds. I also use the Census Bureau
House Price Index. The sample period begins in 1984:Q1 and ends in 2019:Q4, i.e. pre-
pandemic. The variables I use are:
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Figure 10: Posterior distributions diagnostic expectations ref: Q1.
Note: The red dashed line represents the mean of each posterior distribution.
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Figure 11: Posterior distributions rational expectations.
Note: The red dashed line represents the mean of each posterior distribution.
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Figure 12: Historical shock decomposition under RE model.
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Figure 13: Historical shock decomposition under DE model with twelve-quarters reference.
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Output

Data: Real Gross Domestic Product (Billions of chained 2012 Dollars, seasonally adjusted
annual rate). The series is adjusted by the civilian non-institutional population. The
result is log transformed, detrended using the first difference and demeaned. Source:
Board of Governors of the Federal Reserve System.

Inflation

Data: Implicit Price Deflator (Index 2012 = 100, seasonally adjusted annual rate). The
series is in quarter-on-quarter log differences and demeaned. Source: Board of Governors
of the Federal Reserve System.

Nominal short-term interest rate

Data: Federal funds rate. Quarterly average of the monthly series. During the zero lower
bound period, the Wu-Xia shadow federal funds rate is used. Source: Board of Governors
of the Federal Reserve System and Wu and Xia (2016).

House prices

Data: Census Bureau House Price Index (Index 2012 = 100, quarterly new one-family
houses sold including value of lot). This series is deflated using the Implicit Price Deflator.
The result is log-transformed, detrended using the first difference, and also demeaned.
Source: Census Bureau.

Loans to households

Data: Households and Non-profit Organisations, one-to-four-family residential mortgages
(Billions of Dollars, seasonally adjusted), and Households and Non-profit Organisations,
Consumer credit (Billions of Dollars, seasonally adjusted). The total amount of loans to
households equals the sum of the two series, which is adjusted by the population level and
converted in real terms using the Implicit Price Deflator. The result is log-transformed,
detrended using the first difference and also demeaned. Source: Bureau of Economic
Analysis.

Nonresidential investment

Data: Private Nonresidential Fixed Investment (Billions of Dollars, seasonally adjusted
annual rate). The series is adjusted by the population level and converted in real terms
using the Implicit Price Deflator. The result is log-transformed, detrended using the
first difference and also demeaned. Source: Board of Governors of the Federal Reserve
System.

Residential investment
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Data: Private Residential Fixed Investment (Billions of Dollars, seasonally adjusted an-
nual rate). The series is adjusted by the population level and converted in real terms
using the Implicit Price Deflator. The result is log-transformed, detrended using the
first difference and also demeaned. Source: Board of Governors of the Federal Reserve
System.

Housing wealth

Data: Households and Non-profit Organisations, Real Estate at Market Value (Billions
of Dollars, not seasonally adjusted). The series is adjusted by the population level and
converted in real terms using the Implicit Price Deflator. The result is log-transformed,
detrended using the first difference and also demeaned. Source: Bureau of Economic
Analysis.

Population level

Thousands of Persons. Quarterly average of the monthly series. Not seasonally adjusted.
I transformed this series into an index as in Smets and Wouters (2007) but with base
year 2012:3.
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