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▶ Key Publications:
▶ Knowledge Reuse in Edge Computing Environments, Journal of Network and Computer Applications

Qianyu Long, Kostas Kolomvatsos, Christos Anagnostopoulos
▶ Model Reuse in Distributed Computing: A Multitask Learning Approach based on Partial Learning Curves,

Transactions on Emerging Topics in Computing
Qianyu Long, Kostas Kolomvatsos, Christos Anagnostopoulos

▶ FedDIP: Federated Learning with Extreme Dynamic Pruning and Incremental Regularization, International
Conference on Data Mining 2023
Qianyu Long, Christos Anagnostopoulos, Shameem Puthiya Parambath, Daning Bi

▶ Decentralized Personalized Federated Learning based on a Conditional Sparse-to-Sparser Scheme, Under
review in Transactions on Neural Networks and Systems
Qianyu Long, Qiyuan Wang, Christos Anagnostopoulos, Daning Bi

▶ FedPhD: Federated Pruning with Hierarchical Learning of Diffusion Models, In preparation for submission to the
International Conference on Data Engineering 2025
Qianyu Long, Christos Anagnostopoulos
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▶ Background on Distributed Machine Learning
▶ Efficient Distributed Learning with Direct Reuse
▶ Efficient Distributed Learning with Enhanced Reusability
▶ Efficient Centralized Federated Learning with Pruning
▶ Efficient Decentralized Federated Learning with Pruning
▶ Conclusion
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Definition: Distributed Machine Learning (DML) enables training machine learning models
across multiple devices, addressing scalability and privacy challenges.

Motivation:
▶ Scalability
▶ Efficiency
▶ Data Location Constraints

Categories:
▶ Data Parallelism
▶ Model Parallelism
▶ Hybrid
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Applications
▶ Autonomous Vehicles
▶ Smart Grid
▶ IoT-Enabled Healthcare
▶ Digital Twin Client

(1)
(5)

Client

(1)
(5)

Client

(1)
(5)

Cloud(2)
(2) (2)(3) (3)

(3)
(4)

(3)Download Aggregated Results
(2)Upload Updates 
(1)Model Traning 

(4)Model Aggregation 
(5)Model Inference 

Figure 1: Example of Distributed ML (Server-Client)
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▶ System Heterogeneity: Diverse hardware, network capacities, and computational
power across devices.

▶ Data Heterogeneity: Non-uniform data distributions across nodes.
▶ Communication Bottlenecks: Limited bandwidth and latency issues in inter-node

data exchange.
▶ Data Privacy: Maintaining data confidentiality across distributed training

environments.
▶ Computation Constraints: Limited computational resources on edge devices.
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Edge Computing: Edge computing is a distributed computing framework where data
processing occurs near the data source.

Motivation
▶ Limited computational

resources and expensive
communication.

▶ Data redundancy exists
under certain situations
(e.g., routine commuting,
traffic cameras).

Figure 2: Home-to-School of Computing Science,
University of Glasgow
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Target: Reduces costs while keeping model performance.

Figure 3: Mechanism of BLM

Solution: Reuse models from other
nodes to avoid retraining.
▶ Borrower-Loaner-Match to

decide reusable models.
▶ Model-Reusability-Monitoring

to ensure model performance.
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Math Form:
▶

MMD(i, j) = ∥µi − µj∥H

▶

CD(i, j) = 1 −
vi · vj

∥vi∥∥vj∥

▶

St = αYt+(1−α)(St−1+bt−1), bt = β(St−St−1)+(1−β)bt−1

▶ Reusability: Over 67% success in reusability
thresholds, with minimal false positives.

▶ Similarity Metrics: MMD and CD effectively
guide borrower-loaner matches.

▶ Accuracy: High predictive accuracy
maintained. (With only around 2% drop in
accuracy)

▶ Monitoring: Holt-Winters detects data drift,
ensuring model relevancy.

12



Knowledge & Data
Engineering Systems

Efficient Distributed Learning with
Enhanced Reusability

13



Knowledge & Data
Engineering SystemsReusability in Distributed Learning

Motivation
▶ Distributed systems (IoT,

edge devices) generate
redundant data. Hence,
training separate models
for each task is
cost-inefficient.

▶ Pre-existing reusable
models might be
unavailable.

Figure 4: Data Distribution Across Nodes: For nodes with
similar data distributions (same color), models trained on
one node are reusable for some of others.
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Target: Minimize resource consumption by optimizing model reuse in distributed training.

PLC

node PLC

PLC

PLC leader

non-leader

(a): PLC estimation (b): Leader election

(d): DMtL (c): Clustering

clusterhead

head

head

Figure 5: Two-Phase DMtL Process based on
Partial Learning Curves

Method: Efficient knowledge reuse
across tasks through model sharing.
▶ Partial Learning Curves

computation with bootstrapping
method, to estimate task similarity.

▶ PLC-based clustering and leader
election.

▶ Distributed Multitask Learning
across Leaders based on similarity
information. 15
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Problem Formulation

▶ Partial Learning Curves (PLC): Vi =
[

V(S1)
i , V(S2)

i , . . . , V(Sp)
i

]T

▶ Task Relationship Matrix: Ω−1
i,j = 2

m · 1
1+exp(ϵ·di,j)

▶ Optimization Objective: J(W) =
∑K

k=1
∑nk

t=1 Lk(wT
k xt

k, yt
k)+

λ1
2 tr(WΩ−1WT)+ λ2

2 ∥W∥2
F

Key Results

▶ More than 80% communication computation reduction via clustering and head
selection.

▶ Sørensen-Dice Coefficient: µDC > 0.9 for efficient clustering.
▶ Minimal loss with reused models (ξ ≈ 0.05).
▶ Improved Model performance, compared with SOTA baselines with 0.8% to 2% across

CIFAR10 and Sentiment Datasets. 16
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Definition: Federated Learning (FL) is a decentralized machine learning approach that
enables training across multiple client devices without sharing raw data.[3]

Motivation:
▶ Resource constraints on

edge devices.
▶ Communication

bottleneck on the central
server.

▶ Suboptimal sparsity in
SOTA methods

Oversized?

...

Busy!

Figure 6: Illustration of Challenges
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▶ Introduces dynamic pruning with error feedback
into FL: (DPF[2]):

ωt+1 = ωt − ηt∇f(ωt ⊙mt) (1)

= ωt − ηt∇f(ωt + et) (2)

▶ Inspired by GReg[5], we combine incremental
regularization to achieve extreme sparsity.

λt =


0 if 0 ≤ t < T

Q
...

...
λmax(Q−1)

Q if (Q−1)T
Q ≤ t ≤ T

(3)
Figure 7: Illustration of FedDIP
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(a) AlexNet on CIFAR10: Top-1
Accuracy over 1000 rounds for
various FL methods.
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(b) LeNet5 on FashionMNIST: Top-1
Accuracy over 1000 rounds for
different FL methods.
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(c) ResNet18 on CIFAR100: Top-1
Accuracy over 1000 rounds for
multiple FL methods.

Figure 8: Top-1 accuracy comparison of AlexNet, LeNet5, and ResNet18 across 1000
communication rounds using various federated learning methods.
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Summary of Contributions

▶ Accelerated training times
▶ Reduced memory usage
▶ Lower download costs

Detailed Results

▶ Enables extreme sparsity pruning while preserving accuracy: FedDIP achieved up to
90% sparsity with only 1.25% accuracy loss.

▶ Demonstrates efficiency across various model architectures in experiments with
Fashion-MNIST, CIFAR10, and CIFAR100 datasets.

▶ Offers theoretical convergence guarantees for FedDIP.
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From Centralized Federated Learning to Decentralized Federated Learning

Definition: Decentralized Federated
Learning (DFL) is a variation of
Federated Learning where devices
collaboratively train a model by
communicating directly with each other,
eliminating the need for a central server.

Motivation:
▶ Higher Communication
▶ Higher Computation
▶ Higher Maintenance
▶ Faster Convergence
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▶ Dynamic Aggregation: Clients reuse models within the same communication round,
splitting neighbors into prior N(a)

k and posterior N(b)
k subsets. - Aggregated model for

client k at time t:

ω̃t
k =

∑
j∈Gt

k

ωt
j + ωt

k

⊙ mt
k

▶ Sparsity-Driven Pruning: - Utilizes PQ Index (PQI)[1] for layer-wise compressibility
assessment:

PQI(ωt
k,l) = 1 −

(
1
dt

l

) 1
q−

1
p
·
∥ωt

k,l∥p

∥ωt
k,l∥q

- Pruning occurs based on the threshold δpr to control pruning frequency:

|∆t
0 −∆t−1

0 |
|∆1

0|
< δpr 24
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Figure 9: Iullstration of DA-DPFL
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Figure 10: Performance comparison on multiple datasets and models. 26
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▶ Model Accuracy: DA-DPFL consistently outperforms baselines, achieving top-1
accuracy across datasets, with up to 3.2% higher accuracy on CIFAR10 (ResNet18),
2.6% on HAM10000 (AlexNet), and 2.4% on CIFAR100 (VGG11) under various data
partitioning schemes.

▶ Energy and Communication Efficiency:
▶ Reduces busiest communication cost by 5x, thanks to sparsity-driven pruning and

dynamic aggregation.
▶ Achieves high model sparsity (up to 80%) with minimal/no accuracy loss.

▶ Convergence Efficiency: Fewer communication rounds are needed to reach target
accuracy, outperforming DisPFL and other baselines, due to adaptive pruning and
dynamic client scheduling.
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Core Advances:
▶ Developed efficient distributed

learning frameworks for
knowledge reuse and
sparsification, addressing resource
constraints in edge and federated
systems.

▶ Introduced pruning and dynamic
aggregation methods (FedDIP and
DA-DPFL) to reduce communication
costs and improve convergence
with minimal accuracy loss.

Empirical Validation:
▶ Demonstrated efficiency across diverse

datasets and architectures, outperforming
state-of-the-art baselines in accuracy,
communication, and computation.

Future Directions:
▶ Extending model reusability frameworks to

more heterogeneous environments.
▶ Exploring further sparsification methods for

lightweight, real-time federated systems in
mobile settings.
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