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Federated Learning (FL) enables privacy-preserving distributed
training by exchanging minimal information between clients and a
central server [1].

In FL, clients receive a global model, train locally, and send
updates back to the server for aggregation over several rounds.
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Methodology

* Layer-wise Model Aggregation
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Methodology: LIFE
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LIFE Basic Structure
» |Leaders at different levels

» Leaders fine-tune their
subordinate models

» Aggregation takes place only in
neighbouring levels

» Layer-wise Model Aggregation
+ Knowledge distillation
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Fig. 3: LIFE Basic Structure
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Experimental Results

Datasets & models : RoBERTa-based transformer model
(12-layer, 8-layer, and 4-layer) on GLUE (General Language
Understanding Evaluation) benchmark.

Experimental setup:

» 1:6:19 and 1:1:1 client ratios
» different skewed label distributions in the non-iid case

> small clients (Left,a=0.1/a=0.3) & medium clients
(Left,a=0.5)
» small clients (Left,a=0.3) & medium clients (right,a=0.5)
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Table 1: Model configuration study: Leader fine-tuning ratio p and T2B
vs. B2T Directions (SST2)

Leader Fine-tuning ratio p

Accuracy

p=0.1

p=0.3

p=05

p=0.7

86.39% + 0.0156

86.43% £ 0.0193

84.72% £ 0.0218

81.68% =+ 0.0281

LMA rounds T»p

Accuracy

Ta=1

Ta=3

Ta=5

Ta=10

87.12% £ 0.0156

87.97% £ 0.0102

87.73% =+ 0.0085

87.69% =+ 0.0169

T2B & B2T Directions

Accuracy

T2B-w

T2B-w/o

B2T-w

B2T-w/o

82.05% =+ 0.0897

81.98% =+ 0.0104

81.59% =+ 0.0845

81.97% =+ 0.0102




Table 2: Structure comparison (accuracy); SST2

D 1:1:1 1D 1:6:19 a=01 (S-L/M-L) a=03 (S-L/M-L) a=03 (S-L/M-R)
LIFE 90.02 86.81 90.02 88.53 91.51
InclusiveFL 90.60 81.54 90.00 84.98 91.47
LIFE-M 91.51 85.55 89.99 89.91 91.06
InclusiveFL-M 89.11 82.57 89.07 90.37 90.83
LIFE-S 83.37 81.19 50.92 68.69 80.73
InclusiveFL-S 78.78 79.70 50.89 62.16 77.64

» LIFE's model enhancement on )
medium and lower levels is . - L.
outstanding

» Enhancement is more effective
when the opposite label
distribution is skewed

Fig. 4: Visualise Results



CoLA Dataset STSB Dataset QNLI Dataset

10 100 = e
06 = urem
% = ues
10.96% 0.8 80
5% o s g §
gos 2104 dysuse €06 £ o
8 Jossx $ $
203 o2ax 3 z
g £o4 £ a0
g02 g g

3

g &8 3 3

Accuracy / Correlation
Accuracy / Correlation

Fig. 5: Comparison. Leader-driven improvement is more effective at the
subordinate level

Overall improvement on top, medium, and bottom levels up to 37.4% for
ColA, 58.22% for STSB, 6.8% for QNLI, 23.06% for MNLI, 7.88% for
MRPC and 10.43% for RTE. O <@ «=» <2
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Impact: LIFE uses leader-driven aggregation and a top-down
aggregation order that enhances the overall accuracy of the model,
especially in helping weak clients.
Future Work

» Hierarchical model pruning across levels

P Leader election and leader-member matching
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Thank you!
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