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Federated Learning (FL) enables privacy-preserving distributed
training by exchanging minimal information between clients and a
central server [1].
In FL, clients receive a global model, train locally, and send
updates back to the server for aggregation over several rounds.
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Challenges in Heterogeneous
FL:

▶ Resource Variability:
Different clients (e.g.,
smartphones, edge servers)
have varying computational
resources, complicating
model aggregation.

▶ Model Fairness: Weak
clients struggle to train large
models, risking exclusion
and unfairness.

Fig. 1: FL Framework
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* Layer-wise Model Aggregation
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Fig. 2: InclusiveFL [2]
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Aggregate fragment with different weights:
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LIFE Basic Structure

▶ Leaders at different levels

▶ Leaders fine-tune their
subordinate models

▶ Aggregation takes place only in
neighbouring levels

▶ Layer-wise Model Aggregation
+ Knowledge distillation Fig. 3: LIFE Basic Structure



LIFE : 1. Leader-driven
fine-tuning: from higher
hierarchical levels (TOP) to lower
ones (BOTTOM)

2. Leader driven aggregation

θt+1
l,m,ℓ =

nl,m
nl,m + 1

θtl,m,ℓ+
1

nl,m + 1
θtl+1,m,ℓ



Contents Knowledge & Data
Engineering Systems

▶ Introduction

▶ Methodology

▶ Experimental Results
▶ Conclusion

▶ Q&A



Experimental Results Knowledge & Data
Engineering Systems

Datasets & models : RoBERTa-based transformer model
(12-layer, 8-layer, and 4-layer) on GLUE (General Language
Understanding Evaluation) benchmark.
Experimental setup:

▶ 1:6:19 and 1:1:1 client ratios
▶ different skewed label distributions in the non-iid case

▶ small clients (Left,a=0.1/a=0.3) & medium clients
(Left,a=0.5)

▶ small clients (Left,a=0.3) & medium clients (right,a=0.5)
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Table 1: Model configuration study: Leader fine-tuning ratio p and T2B
vs. B2T Directions (SST2)

Leader Fine-tuning ratio p

p = 0.1 p = 0.3 p = 0.5 p = 0.7
Accuracy 86.39%± 0.0156 86.43%± 0.0193 84.72%± 0.0218 81.68%± 0.0281

LMA rounds TA

TA = 1 TA = 3 TA = 5 TA = 10
Accuracy 87.12%± 0.0156 87.97%± 0.0102 87.73%± 0.0085 87.69%± 0.0169

T2B & B2T Directions

T2B-w T2B-w/o B2T-w B2T-w/o
Accuracy 82.05%± 0.0897 81.98%± 0.0104 81.59%± 0.0845 81.97%± 0.0102



Table 2: Structure comparison (accuracy); SST2

IID 1:1:1 IID 1:6:19 a=0.1 (S-L/M-L) a=0.3 (S-L/M-L) a=0.3 (S-L/M-R)

LIFE 90.02 86.81 90.02 88.53 91.51
InclusiveFL 90.60 81.54 90.00 84.98 91.47

LIFE-M 91.51 85.55 89.99 89.91 91.06
InclusiveFL-M 89.11 82.57 89.07 90.37 90.83

LIFE-S 83.37 81.19 50.92 68.69 80.73
InclusiveFL-S 78.78 79.70 50.89 62.16 77.64

▶ LIFE’s model enhancement on
medium and lower levels is
outstanding

▶ Enhancement is more effective
when the opposite label
distribution is skewed

Fig. 4: Visualise Results



Fig. 5: Comparison. Leader-driven improvement is more effective at the
subordinate level

Overall improvement on top, medium, and bottom levels up to 37.4% for
CoLA, 58.22% for STSB, 6.8% for QNLI, 23.06% for MNLI, 7.88% for
MRPC and 10.43% for RTE.
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Impact: LIFE uses leader-driven aggregation and a top-down
aggregation order that enhances the overall accuracy of the model,
especially in helping weak clients.
Future Work

▶ Hierarchical model pruning across levels

▶ Leader election and leader-member matching
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Thank you!
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