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Measurement of wavelength by Newton’s Rings 

Introduction 

When a long focus convex lens is placed on an optically flat glass plate and illuminated 

from above with monochromatic light, an interference pattern of circular rings is 

produced, known as “Newton’s Rings”.  The interference pattern is caused by two 

beams of light: the first is internally reflected oF the lower surface of the convex lens; 

the second is transmitted through that lower surface, then reflects oF the flat glass 

plate beneath.  Figure 1 shows the typical 

arrangement of the equipment for a Newton’s Ring 

set up.  The glass reflecting plate, aligned at 45°, 

allows light to illuminate the set up whilst 

simultaneously allowing the resulting interference 

pattern to be viewed with a travelling microscope. 

 

The pattern only occurs where the space between the 

lens surface and the plate is very small, i.e. in the 

region close to the point of contact of the lens with 

the plate.  The greater the focal length of the lens, the smaller its curvature and 

consequently the greater the extent of the resulting ring pattern and the more widely 

spaced the rings.   

Figure 1: Newton’s Rings set-up 
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Figure 2 shows a more detailed 

illustration of the rays involved: the 

incident ray (black), the internally 

reflected ray (green) and the ray which 

emerges from the lens and is reflected 

from the glass plate (red).   

 

For light incident normally on the lens 

the displacement of light emerging 

from the lower lens surface due to refraction can be ignored and the eFective path 

diFerence between the interfering rays is given by 𝛿 = 2𝑑. 

 

In the Newton’s Ring set up we have two boundaries – lens to air, then air to lens.  When 

light moves from a less dense medium to a denser medium, the reflected ray undergoes 

a 𝜋 radians phase shift, relative to the original ray.  So, in our set up one of the beams – 

the red one – will undergo such a shift.  This means that dark interference fringes occur 

at distances 𝑑!  as given by  

2𝑑! = 𝑚𝜆 

⇒ 𝑑! =
𝑚𝜆
2  

[1] 

The shape in Figure 3 represents a circle of radius 𝑅, of which the convex lens is a 

section.  The figure illustrates the connection between 𝑅, 𝑑!  and 𝑟!, the radius of the 

interference rings. 

Figure 2: Main rays of interest 
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The lines AB and CD are chords that meet at S; the theory of intersecting chords states 

that 

𝐴𝑆 × 𝑆𝐵 = 𝐶𝑆 × 𝑆𝐷 

⇒	 (2𝑅 − 𝑑!) × 𝑑! = 𝑟! × 𝑟!  

⇒ 𝑟!" = 2𝑅𝑑! − 𝑑!"  

⇒ 𝑟!" ≈ 2𝑅𝑑!  

since 𝑑! ≪ 𝑅.  Combining this with [1] we then get 

𝑟!" =
2𝑅𝑚𝜆
2  

In practice it is more common to measure the diameter of 

the rings in a Newton’s Ring pattern: 

𝐷!" = 4𝑅𝑚𝜆 

 

[2] 

If graph of 𝐷!"  against 𝑚 is plotted then 𝜆 can be determined provided the radius of 

curvature of the lens, 𝑅, is known. 

Notes on equipment 

Equipment list 

§ Travelling microscope 

§ Convex lens 

§ Flat glass plate 

§ 45° angle reflecting plate 

§ Sodium discharge lamp 

 

Equipment guidance 

Travelling microscope 

§ Make sure the crosswires are in focus by adjusting the eyepiece. Then focus the 

microscope on the ring pattern.   

Figure 3: Circle of radius 
equal to that of convex lens 
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§ To measure the diameters of the rings, first find the centre of the ring pattern.  

Move the microscope to the left (or right), counting out to the 10th ring.  Note the 

position of the microscope, then move in ring by ring recording the positions of 

each.  Continue back to the centre, then outwards to the 10th ring again.  These 

values will give you the diameters of the first 10 rings. 

   

Lens set up 

§ To get the clearest interference pattern, place the convex lens, plate and 

reflecting glass assembly on the tray of the travelling microscope and then adjust 

the reflecting plate and lamp to get as much light on to the convex lens as 

possible. 

 

Determining the radius of curvature of the lens 

There are a range of ways to do this; the method 

described below is known as the method of self-

conjugate points.  This method follows from the fact 

that the light reaching a convex lens from its focal 

plane is rendered parallel to the optic axis of the lens.  

It uses the arrangement shown in Figure 4.  

 

When the distance between the grid and the lens 

equals the focal length of the lens, the beams reaching 

the lens will emerge parallel. As a result when they then reflect from the plane mirror 

they will return along the same path, creating an image superimposed on the original 

source.  The arrows in Figure 4 show this. 

 

The following procedure should be carried out: 

1. Create the set up shown in Figure 4, adjusting the plane mirror until the reflected 

light forms an image of the grid on the light box.   

2. Adjust the positions of the lens and plane mirror until the image is as sharply 

focussed as possible, then clamp the lens holder in place. 

Figure 4: Determining 
focal length of lens 
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3. Measure the distance between the light box and the lens. You can use a metre 

rule for this, or a vertex pointer. The latter method uses a horizontal pointer 

mounted on a post.  Place one end of the pointer against the light box then note 

the position of the post.  Move the post until the other end of the pointer is in 

contact with the lens; note the position of the post.  The distance between box 

and lens is then the diFerence in these positions PLUS the length of the vertex 

pointer itself.  

4. Measure the thickness of the lens with vernier callipers and hence determine the 

distance from the surface of the lens to its centre along its optic axis, and 

therefore the total distance from grid to centre of lens.  This is the focal length. 

5. The lens is plano-convex and made of crown glass of refractive index 1.52. 

Together with the value now calculated for the focal length, the lens maker’s 

formula allows the radius of curvature of the convex surface of the lens to be 

determined. 

1
𝑓 =

(𝑛 − 1) =
1
𝑅#
−
1
𝑅"
> 

[3] 
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