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Abstract

I introduce a high-dimensional Bayesian vector autoregressive (BVAR) framework
designed to estimate the effects of conventional monetary policy shocks. The model
captures structural shocks as latent factors, enabling computationally efficient
estimation in high-dimensional settings through a straightforward Gibbs sampler. By
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tractability, the methodology offers a flexible and scalable approach to empirical
macroeconomic analysis using BVARs, well-suited to handle data irregularities
observed in recent times. Applied to the U.S. economy, I identify monetary shocks
using a combination of high-frequency surprises and sign restrictions, yielding results
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1 Introduction

This paper quantifies the effectiveness of conventional monetary policy shocks during the

post-pandemic inflationary period using large-scale vector autoregressions (VARs). While

previous studies (see, for example, Bańbura et al., 2010; Bernanke and Boivin, 2003;

Giannone et al., 2015) have established the benefits of identifying monetary policy in

data-rich environments, this research develops a flexible yet numerically robust VAR

framework to address emerging estimation and identification challenges. First, after a

prolonged period of near-zero interest rates, historical data may be less informative for

evaluating recent monetary policy effectiveness.1 Second, the COVID-19 pandemic

introduced substantial outliers, disrupting macroeconomic correlations and complicating

structural identification.2 Third, in an increasingly globalized and financially volatile

environment, enhancing the VAR with relevant predictors is crucial for statistical fit and for

ensuring that structural shocks are well identified. Moving forward, addressing these data

challenges requires novel statistical methods and estimation algorithms, capable of handling

high-dimensional data, nonlinearities, and other complexities. A major contribution of this

study is the development of such methods, allowing the integration of high-dimensional

predictors to the application of robust identification techniques for structural shocks.

To tackle these challenges, I develop a high-dimensional and data-analytic approach that

integrates economic identification schemes with a Bayesian shrinkage estimation methodology.

Building on Korobilis (2022), I extend the VAR to integrate high frequency instruments, fat-

tailed errors, time-varying parameters, and stochastic volatility. The approach uses “target”

1Studies examining conventional monetary policy (MP) shocks, such as Arias et al. (2019); Read (2024);
Schlaak et al. (2023), rely on data ending in 2007, that is, just before the period when nominal interest rates
effectively reached their zero lower bound. Aruoba and Drechsel (2024) perform their empirical analysis to
2008, arguing that their findings remain relevant for the 2022–2023 inflationary period, provided that the
transmission mechanism of MP shocks has not changed. However, they caution that factors such as state
dependency, non-linearities, and structural shifts may alter response dynamics and invalidate projections to
the recent period.

2Lenza and Primiceri (2022) and Carriero et al. (2024a) develop VAR methods to accommodate COVID-19
outliers and stochastic volatility; they do not, however, address structural shock identification or inference in
high-dimensional systems.
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and “path” factors of high frequency surprise series from Gürkaynak et al. (2005) to look at

how the markets react to Federal Reserve Bank’s policy announcements. The target factor

describes the effects of surprise changes in the current federal funds rate target, that is,

conventional shocks that are of interest in this paper. The path factor captures the future

policy path which is used to identify a residual monetary policy shock.3 I first show that in

a small-scale VAR the use of high-frequency surprises as internal instruments for identifying

monetary policy is not always robust and in line with theory (see also Acosta, 2023; Lakdawala,

2019, for similar arguments).4

Next, I show that a plausible solution to this lack of identification is a hybrid method

that merges proxies with zero and sign restrictions to the response of key macroeconomic

aggregates – namely measures of output, inflation, short/medium/long interest rates, and

money supply. While sign restrictions to these variables align with conventional theoretical

predictions of a monetary policy shock, they alone are also insufficient for unique

identification and thus need to be combined with high-frequency instruments.5 An emerging

line of research, such as Acosta (2023), Braun and Brüggemann (2023), Carriero et al.

(2024b), Read (2024) and Schlaak et al. (2023), demonstrates the advantages of combining

established identification schemes, such as sign, zero and narrative restrictions, proxies, and

identification via heteroskedasticity and non-Gaussianity. Prüser (2024) and Chan et al.

(2022) similarly extend the VAR methodology of Korobilis (2022) by adapting it to

identification by non-Gaussianity and heteroskedasticity, respectively. However, these

3There are varying views about the number and effects of future policy path and unconventional shocks, in
general. Nakamura and Steinsson (2018) argue that the Fed has private information (what they call the “Fed
information effect”), while Bauer and Swanson (2023) argue that both the Fed and professional forecasters
respond to incoming economic news, which naturally generates a positive correlation between monetary policy
surprises and forecast revisions, without requiring the Fed to have private information about the economy.
Swanson (2021) extends Gürkaynak et al. (2005) to include a third, quantitative easing factor, and Jarociński
(2024) identifies up to three unconventional monetary policy shocks.

4Several other studies have raised concerns about the use of high-frequency instruments (HFIs) in identifying
monetary policy shocks, particularly regarding issues of exogeneity, temporal aggregation bias, and event
window limitations; see Bauer and Swanson (2023), Paccagnini and Parla (2021) and Casini and McCloskey
(2024), among others.

5Braun and Brüggemann (2023) present similar arguments in the context of VARs that combine external
instruments with sign restrictions. While their algorithm is very useful, it is not computationally feasible for
large VARs, particularly when allowing for time-varying shock impacts.
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identification approaches are statistical in nature, and may not always ensure adequate

identification of conventional monetary policy shocks. In contrast, I provide comprehensive

evidence that combining high-frequency instruments with sign restrictions remains

economically robust across various data and modeling assumptions, including lag length,

stationarity transformations of variables, assumptions about residual shocks, the

measurement of short-term interest rates, and different assumptions regarding the

exogeneity of instruments.

After establishing that the hybrid identification scheme performs effectively in a

small-scale VAR, the analysis examines the impact of post-pandemic conventional monetary

policy on the broader economy, with a particular focus on disaggregated components of

consumer inflation. The VAR model is expanded to include key financial indicators,

uncertainty measures, expectations, and other predictors, ensuring that the residuals

effectively capture structural monetary policy shocks. These predictors and inflation

components are permitted to exhibit time-varying responses to monetary policy shocks,

accommodating changes in the transmission mechanism over time, with idiosyncratic shocks

modeled to incorporate stochastic volatility dynamics. Employing Bayesian shrinkage and

variable selection techniques allows for the semi-automatic determination of the optimal

degree of time variation within the system, adeptly adjusting to abrupt changes, such as

those introduced by post-COVID-19 outliers. This approach differs from Mumtaz and

Petrova (2023), where all parameters in their proxy VAR are time-varying. In contrast, our

methodology maintains constant weights for high-frequency instruments and key

macroeconomic aggregates (those subjected to sign restrictions) when loading onto

structural shocks. This strategy ensures robust identification through these variables while

permitting other variables of interest to have unrestricted, time-varying responses to

monetary policy shocks. Consequently, the large-scale system integrates multiple

identification layers, balancing the imposition of economic theory with the flexibility for data

to adapt to abrupt regime shifts experienced since the global financial crisis.
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The proposed VAR methods are applied to monthly macroeconomic data for the US for

the period 1995-2024. Among the large number of variables, the variables of interest are

disaggregate price indices and their response to conventional monetary policy shock during

the post-pandemic inflationary period. Based on the definitions of the Bureau for Labor

Statistics, I use eight major categories of the US consumer price index (CPI) such as food,

apparel, and education, in order to pin down the heterogeneous effect of policy shocks. I find

that the effects of monetary tightening vary substantially across CPI components, with core

goods exhibiting rapid and pronounced disinflationary responses, while services (particularly

housing) adjust more sluggishly and with long lags. Importantly, these sector-specific

responses have evolved over time: in the post-pandemic period, the impact of conventional

policy shocks on goods prices has intensified, likely reflecting the unwinding of pandemic-era

demand and supply imbalances. Despite this heterogeneity, virtually all components

eventually move in the direction of lower inflation following a contractionary shock,

confirming that monetary policy remains a broadly effective tool for influencing inflation

dynamics, even in a high-inflation environment.

The paper is organized as follows. The next Section presents the Bayesian VAR

methodology and builds the various components that will be relevant for large-scale

estimation and structural inference. Section 3 details the variables, sources and

transformations used in this high-dimensional setting. In Section 4 I provide the empirical

results, which are also complemented by an online supplement. Section 5 concludes the

paper.

2 Econometric methodology

The starting point is the p-lag vector autoregression of the form

yt = ϕ0 +

p∑
j=1

Φjyt−j + εt. (1)
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This can be written more compactly as

yt = Φxt + εt, (2)

where yt is an (n× 1) vector of observed macro variables, xt =
(
1,y′

t−1, ...,y
′
t−p

)′
a (k × 1)

vector of lags and the intercept, k = np + 1, Φ = [ϕ0,Φ0, ...,Φp] is an (n × k) matrix of

coefficients, and εt a (n× 1) vector of disturbances distributed as N (0n×1,Ω) with Ω an

n × n symmetric and positive semi-definite covariance matrix. The structural VAR (SVAR)

form is derived by left-multiplying (1) with A yielding

Ayt = Bxt + ut, (3)

where A−1A−1′ = Ω is a decomposition of the reduced-form covariance matrix, B = AΦ are

the SVAR coefficients and ut ∼ N(0, I) are structural shocks where it holds that εt = A−1ut.

The VAR in (1) can be estimated with standard tools, providing estimates of Φ̂ and Ω̂.

However, recovering the matrix A of structural contemporaneous restrictions is not feasible

without further assumptions. A has n2 elements, while Ω̂ has n(n+ 1)/2 elements estimated

from data. Identification restrictions, usually stemming from economic theory, stylized facts,

or intuition, fill the gap in providing information on the remaining n(n − 1)/2 coefficients. I

focus on two popular approaches to identification, namely sign restrictions and high frequency

instruments. The former helps identify elements of A that satisfy expected signs; for example,

if the response of variable i to a shock in j is positive, i, j = 1, ..., n, then Aij > 0. The latter

approach uses m proxies or instruments mt that are correlated with m shocks of interest and

uncorrelated with other shocks. In this paper, mt are high-frequency surprises in interest rate

markets, so the terms proxies, instruments, and surprises may be used interchangeably.
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2.1 A large monetary policy Bayesian VAR

In the presence of m high frequency surprises mt and large-n macro variables yt, the VAR

of (2) has to be augmented with the surprise data. Using the result above that εt = A−1ut,

I define the following generic representation of this augmented VAR (see also Braun and

Brüggemann, 2023)

 mt

yt

 =

 Φmm Φmy

Φym Φyy


 mt−1

yt−1

+

 Γ

A−1

ut +

 W 1/2

0

ηt, (4)

where Φij are the autoregressive coefficients of lags of variables j in equations of variables i,

with i, j = m,y, ut ∼ N(0, I) still denotes the structural VAR shock, the term ηt ∼ N(0, I) is

an idiosyncratic disturbance with ηt⊥ut, Γ is a matrix of coefficients andW a diagonal matrix

of variances. Γ measures the strength of the instrument’s correlation with the structural

shock, while W accounts for the possibility that the instrument is imperfect, allowing for

measurement error or partial relevance. For the sake of notational simplicity the intercept

term is excluded in the specification above, and I focus on the one-lag specification without

loss of generality. Mertens and Ravn (2013) and Jarociński and Karadi (2020) assume that

Φmm = Φmy = 0. Bauer and Swanson (2023) argue that interest rate surprises might be driven

by macroeconomic news which is equivalent to assuming Φmy ̸= 0, as long as y also includes

measures of macro news. Another empirically relevant question is also whether macroeconomic

variables are dynamically independent of high frequency surprises, implying Φym = 0.

In higher dimensions, when n is sufficiently large, it is expected that the VAR system does

not necessarily have n structural or primitive shocks. Instead, a smaller number of common,

economically meaningful, driving forces are responsible for causing disruptions in the system.

For that reason I follow previous work in Korobilis (2022) and replace the identity εt = A−1ut

implied by equation (3) with the factor-like decomposition

εt = Λft + vt, (5)
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where ft ∼ N(0, I) is an r × 1 vector of factors with r ≪ n, Λ an n × r matrix of loadings,

and vt ∼ N(0,Σ) is a vector of idiosyncratic disturbances where Σ is a diagonal matrix

of variances. Under this factor decomposition of the reduced-form disturbances, the VAR

augmented with instruments of equation (4) can now be written as

 mt

yt

 =

 Φmm Φmy

Φym Φyy


 mt−1

yt−1

+

 Γ

Λ

ft +

 W 1/2

Σ1/2

ηt, (6)

where in the notation above I have used the fact that vt ≡ Σ1/2ηt.

What is the economic interpretation of the model above? A smaller number of r structural

shocks ft exist in the VAR. In order to see this, define y⋆
t = [m′

t,y
′
t]
′ andΦ =

 Φmm Φmy

Φym Φyy

,
Γ⋆ =

 Γ

Λ

 and W ⋆ =

 W

Σ

, and solve for the SVAR form as follows

y⋆
t = Φy⋆

t−1 + Γ⋆ft +W ⋆1/2ηt,⇒ (7)

A⋆y⋆
t = By⋆

t−1 + ft +A⋆W ⋆1/2ηt, (8)

A⋆y⋆
t ≈ By⋆

t−1 + ft, (9)

where A⋆ = (Γ⋆′Γ⋆)−1 Γ⋆ is an r × (n +m) matrix, B⋆ = A⋆Φ. Compared to the standard

SVAR form in equation (3) with contemporaneous relationship matrix A, equation (9) is

a reduced-rank SVAR with r structural relationships among the n macro variables (plus

the m instruments). This SVAR formulation results from the fact that A⋆W ⋆1/2ηt → 0

as n → ∞ (Korobilis, 2022). Therefore, assuming the effect of the disturbance term ηt

vanishes asymptotically in the SVAR representation, ft is approximately equivalent to the

vector of structural disturbances ut. However, in the reduced-form formulation the effect

of ηt remains important and it has to be estimated alongside other parameter. This term

has a natural interpretation too. From a statistical perspective, idiosyncratic disturbances
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ηt are considered to arise due to measurement error, outliers and other irregularities in each

individual time series. From an economic point of view, the idiosyncratic disturbance term

corresponds to expectations errors, heterogeneous information sets, myopia and other forms

of irrational behavior (Gorodnichenko, 2005).

The result above suggest that impulse response functions (IRFs) are able to reflect the

propagation of economically interpretable structural shocks, even in the presence of

heterogeneous and noisy time series. IRFs trace the dynamic effect of a structural shock fjt

on the vector of observables y⋆
t = [m′

t,y
′
t]
′ over time. These effects can be obtained by

considering the vector moving average (VMA) representation of the system in (6), which

takes the form:

y⋆
t = µ+

∞∑
h=0

Ψh

(
Γ⋆ft−h +W ⋆1/2ηt−h

)
, (10)

where µ is a constant mean vector, Ψh are the VMA coefficients implied by the VAR

companion form, and Γ⋆ stacks the proxy coefficients Γ and the macroeconomic loadings Λ.

The impulse response at horizon h to the j-th structural factor fjt is:

IRF
(j)
h =

∂y⋆
t+h

∂fjt
= ΨhΓ

⋆
·j, (11)

where Γ⋆
·j is the j-th column of Γ⋆. In particular, the impact IRF (i.e., the contemporaneous

effect) is given by:

IRF
(j)
0 = Ψ0Γ

⋆
·j = Γ⋆

·j. (12)

This result is immediate from the identity Ψ0 = I and demonstrates that the loading vector

Γ⋆
·j defines the contemporaneous response of each observable variable to structural factor fjt.

Therefore, any parametric restrictions imposed on the sign or magnitude of elements of Γ

and Λ (i.e., Γ⋆) directly translate into sign and shape restrictions on the impact responses

of the observed series. This insight underpins the identification strategy employed in this

paper. Specifically, the combination of Γ and Λ determines the direction and magnitude of

the contemporaneous responses to the structural factors ft. In the context of an instrument-
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augmented VAR, the matrix Γ governs the impact of the factors on the instrument block mt,

while Λ governs the impact on the macroeconomic variables yt.

In this paper, I impose that Γ is a diagonal matrix with positive entries, ensuring that

each instrument loads positively on its corresponding factor while maintaining orthogonality

across instruments. This choice is natural given the economic interpretation of the

instruments and facilitates factor identification without requiring an arbitrary normalization

such as Γ = Ir. While this restriction uniquely identifies a rotation of the factors, it does not

guarantee that the resulting impulse responses of the macroeconomic variables are

economically meaningful. Therefore, I impose additional economically motivated sign

restrictions on selected rows of Λ, corresponding to the expected effects of monetary policy

shocks on key aggregates such as output and inflation. This two-layer identification strategy

ensures that the factors are both statistically identified through the instrument block and

economically interpretable through their impact on macroeconomic variables. These sign

restrictions are trivial to impose. Korobilis (2022) shows that such restrictions translate into

truncated normal posterior distributions that are trivial to sample from: identification is

embedded directly into the conditional posteriors, ensuring that every draw automatically

satisfies the imposed restrictions. This one-step identification procedure provides major

computational advantages, allowing the method to scale efficiently to large VAR systems.

An outline of the posterior sampler is given in subsection 2.3 and full technical details of the

sampler are provided in the online supplement.

2.2 Adding time-variation, stochastic volatility and fat-tailed

errors

Time-varying parameter models have gained lots of prominence in macroeconomics, especially

since the global financial crisis. They allow to accommodate structural breaks in the data in

a flexible way. Compared to Markov switching and other regime-switching methods, time-

varying parameters are able to unveil the full transmission mechanism of shocks. For that
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reason, I propose to extend the VAR of the previous Section into the following time-varying

specification

 mt

yt

 =

 Φmm Φmy

Φym Φyy


 mt−1

yt−1

+

 Γ

Λt

ft +

 W 1/2

Σ
1/2
t

ηt. (13)

where the vectorized forms of the matrix Λt as well as each diagonal element log (Σii,t),

i = 1, ..., n follow random walk specifications of the form

vec (Λt) = vec (Λt−1) + ξt, (14)

log (Σii,t) = log (Σii,t−1) + δi,t, ∀i = 1, ..., n, (15)

where ξt ∼ N (0,Q) with Q an n× n covariance matrix, and δi,t ∼ N(0, ω2
i ) with ω2

i a scalar

variance parameter, for i = 1, ..., n.

This form of time-variation has been used consistently since the early macroeconomic

work of the 1970s and it implies the prior belief that each time varying parameter at time t

is centered at its time t− 1 value. It is important to emphasize that the extent to which the

responses of macroeconomic variables vary over time is not determined arbitrarily, but is

governed by the prior placed on the innovation variance matrix Q. In particular, I adopt a

hierarchical horseshoe prior for each diagonal element of Q, which ensures adaptive

shrinkage (Carvalho et al., 2010). This prior is both automatic and tuning-free, and requires

no manual calibration of shrinkage parameters. Each element of Q is decomposed into global

and local variance components, which jointly control the degree of time variation in the

corresponding loading coefficient. The prior shrinks small innovations in Λt aggressively

toward zero, effectively removing time variation where not supported by the data. At the

same time, it allows large innovations to persist, thereby capturing structural breaks. This

regularization mechanism ensures that the impulse responses of disaggregated prices and

other unrestricted variables are shaped primarily by the data, rather than by arbitrary
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assumptions about the nature or smoothness of time variation.

Time-varying parameters and stochastic volatility are important for capturing structural

breaks. However, they may not effectively handle the large outliers associated with the

COVID-19 period. For this reason, I decompose the idiosyncratic error ηt into two

components: one corresponding to the proxies, ηm
t , and another corresponding to the

macroeconomic variables, ηy
t . I assume:

ηt =

 ηm
t

ηy
t

 ∼

 N(0m×1, Im)

t(ν,0n×1, In)

 (16)

where t(ν,0, I) denotes the standardized Student-t distribution with ν an n × 1 vector

indicating the degrees of freedom for each macro variable. In this specification, ν is a

parameter estimated from the data. Smaller values of ν allow for fatter tails and lower

kurtosis, thus accommodating extreme outliers in the data.

Two key aspects of the specification above should be emphasized. First, the

autoregressive parameters are not time-varying. Given the interest in high-dimensional

VARs, the matrix Φ =

 Φmm Φmy

Φym Φyy

 may contain tens of thousands of elements.

Consequently, converting such a large number of parameters into time-varying values would

lead to significant estimation error and bias.6 Moreover, ensuring that each draw of the

autoregressive coefficients corresponds to a stationary VAR would be computationally

impractical. Empirical evidence from the macroeconomics literature provides an additional

reason to avoid time variation in Φ. For example, Sims and Zha (2006) find minimal

evidence of variation in Φ over time, despite finding clear evidence of time-varying

volatilities in a VAR. Even when Φ is time-invariant, it can contain thousands of elements in

high-dimensional settings. To regularize the estimation of this matrix, I follow Korobilis

(2022) and impose a horseshoe prior.

6The limited degrees of freedom in the data and the infeasibility of running the MCMC chain for a sufficient
number of iterations make accurate estimation difficult in very high-dimensional settings.
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The second important aspect of the proposed time-varying extension is that the proxy

equation parameters Γ and W should also remain constant, and the idiosyncratic term ηm
t

should remain Gaussian. In the context of an external instruments VAR model, Mumtaz

and Petrova (2023) allow these parameters to be time-varying. However, in the proposed

specification, the internal instruments load on ft, a vector of latent time-varying parameters

that must be estimated from the data. If Γ and W were also time-varying, they would

absorb much of the informative content of the proxies, making the latent factors “flat” and

unidentifiable. The same issue would arise if ηm
t followed a Student-t distribution: it would

absorb many of the spikes in the surprise proxies, rendering the informational content of the

factors economically irrelevant. In this model, a lack of factor identification translates into a

failure to identify structural shocks, including the monetary policy shock of interest. Therefore,

it is more appropriate to treat the relevance of the proxies as constant and the idiosyncratic

shocks as Gaussian, while allowing the effects of identified shocks on macroeconomic variables

to vary over time. Maintaining constant relevance of the proxies ensures that the model can

more accurately and robustly identify the time-varying effects of monetary policy shocks on

the macroeconomic variables of interest.

2.3 Bayesian Estimation

The details of the Bayesian estimation algorithm are provided in the Online Supplement. In

this section, I briefly outline the main steps and emphasize the computational tractability of

the proposed framework.

Estimation proceeds via a Gibbs sampler that iteratively samples from the complete

conditional posterior distributions of each block of parameters. Despite incorporating several

important extensions relative to Korobilis (2022) — namely, the inclusion of high-frequency

instruments, time-varying loadings and volatilities, and fat-tailed idiosyncratic shocks — all

conditional posterior distributions remain available in closed form. This feature ensures that

estimation remains computationally efficient even in very high-dimensional settings.
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The key steps of the Gibbs sampler are as follows:

1. VAR coefficients Φ: The autoregressive parameters are sampled equation-by-equation

under a hierarchical Horseshoe prior that induces shrinkage and regularizes estimation

in large VARs.

2. Factor loadings Γ and Λ: The factor loading matrices for the instruments and macro

variables are sampled, respecting any imposed sign restrictions to facilitate structural

interpretation. If certain loadings are time-varying, allowing exploration of time-varying

IRFs, then a Horseshoe prior is used to shrink the expanded parameter space.

3. Latent factors ft: The structural shocks (latent factors) are drawn conditional on the

current parameters and data, ensuring orthogonality and unit variance normalization.

4. Idiosyncratic variances W and Σ: The variances of the idiosyncratic disturbances

are sampled using standard inverse-gamma posteriors.

5. Time-varying loadings Λt and volatilities Σt: When time variation is allowed, the

loadings and log-volatilities are modeled as random walks, and their entire trajectories

are sampled using a stacked regression representation that avoids sequential Kalman

filtering (Korobilis, 2021).

6. Degrees of freedom v: When allowing for leptokurtic errors, the degrees of freedom

parameters governing the Student-t distributions of idiosyncratic shocks can be sampled

using a standard Metropolis-within-Gibbs step (Geweke, 1993).

By carefully designing the model structure and prior specification, the estimation algorithm

avoids the need for computationally intensive steps. This makes the proposed framework

highly scalable and well-suited for applications involving a large number of macroeconomic

variables and predictors. In the empirical application, which involves a large VAR model with

30 variables (including the two instruments) and p = 2 lags, it takes approximately two hours
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to generate 100,000 posterior draws using a desktop computer equipped with an Intel Core i9

12900K processor and 32 GB of RAM.

3 Data

The US macroeconomic dataset used in this paper spans January 1995 to May 2024 at a

monthly frequency. Data transformations are selected to induce stationarity and align with

standard VAR practice: levels for rate variables and indexes (interest rates, uncertainty,

sentiment, financial conditions); first log differences for equity indices, exchange rates, and

oil prices; and annual growth rates for output, inflation, and consumer spending. The use

of annual growth rates reflects the smoother dynamics of these series, which helps produce

clearer IRFs given that the data are not pre-filtered for outliers.

The data fall into four broad categories: high-frequency monetary policy surprises, core

aggregate macroeconomic variables, disaggregated CPI components, and predictor variables:

High-Frequency Monetary Policy Surprises I follow Gürkaynak et al. (2005) in

constructing two orthogonal factors from intradaily Treasury futures around FOMC

announcements.

� Target factor: captures unexpected changes in the current federal funds rate target.

� Path factor: measures surprises in the anticipated future path of policy (e.g. forward

guidance).

Monthly aggregates of these high-frequency surprises are drawn from Acosta et al. (2024), who

constructs them by measuring 30-minute windows around scheduled FOMC announcements.

In months when no announcements are available, the values of the surprises are set to zero,

denoting the absence of information. Figure 1 plots these two series.

In the online supplement, I further assess robustness by re-estimating the VAR using

the directly observed surprise series of Jarociński (2024), imposing the exact sign restriction
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Figure 1: Plots of target and path factors for the monthly sample 1995M1 to 2024M5.

identification scheme of Jarociński and Karadi (2020); these data are publicly available on the

author’s website.

Core Aggregate Macroeconomic Variables Our core VAR includes seven U.S.

aggregates: real gross domestic product (GDP), personal consumption expenditures (PCE)

inflation, the federal funds rate, 1- and 10-year Treasury yields, real M2 money and the

Standard and Poor’s 500 (S&P500) stock market index. For robustness, in the online

supplement I consider several other monthly proxies of output and price inflation, such as

total industrial production (IP) and core consumer price index (CPI).

Disaggregated CPI Components To study heterogeneous effects across consumption

categories, I incorporate eight CPI subindices: Apparel; Education; Food; Other Goods;

Housing; Medical Care; Recreation; and Transportation. These series are transformed into

annual percentage changes to ensure comparability with aggregate inflation measures.

Other macro and predictor variables In addition to the seven core macro aggregates,

the large VAR is augmented with a broad set of other macro and predictor series.

Table 1 details of all variables that are used in the remainder of this section. When a
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variable is originally available at a higher frequency (daily or weekly), monthly values are

constructed by averaging all high frequency values over the month. All variables are

downloaded from their sources seasonally adjusted, where this is relevant. The data were

collected on February 12, 2025. Column Tcode shows short codes for applying stationarity

transformations to the time series data, prior to estimating the VAR. The codes are as

follows, 1: level, 2: first differences, 4: log-level, 5: first log differences (month-on-month

growth rate), 7: annual differences (annual growth rate).

Table 1: U.S. macro/financial variables, sources and definition

No Mnemonic Description Tcode Source

Proxies

1 Target Target factor of Gürkaynak et al. (2005) 1 Acosta et al. (2024)1

2 Path Path factor of Gürkaynak et al. (2005) 1 Acosta et al. (2024)1

Core macro variables whose response is sign-restricted

3 RGDP Monthly real GDP 7 S&P2

4 PCE Personal consumption expenditure deflator 7 FRED3

5 SHADOW Wu-Xia Shadow Federal Funds Rate 1 FRB13

6 GS1 Market Yield on U.S. Treasury Securities at 1-Year 1 FRED3

7 GS10 Market Yield on U.S. Treasury Securities at 10-Year 1 FRED3

8 M2REAL Real M2 Money Stock 5 FRED3

9 SP500 S&P 500 price index 5 investing.com4

Disaggregate CPI variables used in the large-scale VAR

10 CPIA CPI: Apparel 7 BLS5

11 CPIE CPI: Education 7 BLS5

12 CPIF CPI: Food 7 BLS5

13 CPIO CPI: Other goods 7 BLS5

14 CPIH CPI: Housing 7 BLS5

15 CPIM CPI: Medical care 7 BLS5

16 CPIR CPI: Recreation 7 BLS5

17 CPIT CPI: Transportation 7 BLS5

Additional predictor variables used in the large-scale VAR

18 UNRATE Unemployment Rate 1 FRED3

19 HOUST New Privately-Owned Housing Units Started 4 FRED3

20 RCONS Real Personal Consumption Expenditures 5 FRED3

21 TWEXAFEGSMTHx Nominal Major Currencies U.S. Dollar Index 5 FRED3

22 MCOILBRENTEU Crude Oil Prices: Brent - Europe 5 FRED3

23 USEPU Global economic policy uncertainty 1 EPU website6

16



24 GPR Geopolitical risk index 1 Caldara and Iacoviello (2022)7

25 EBP Excess bond premium 1 FRB8

26 JLNF12 Financial uncertainty 1 Jurado et al. (2015)9

27 UMSCENT University of Michigan Consumer Sentiment 1 FRED3

28 VIXCLS CBOE Volatility Index: VIX 1 FRED3

29 MPU Monetary Policy Uncertainty 1 FRB10

30 GFC Global Financial Cycle 1 Miranda-Agrippino and Rey (2020)11

Alternative measures

1⋆/2⋆ MP1 Fed funds futures (surprises) 1 Jarociński (2024)12

1⋆/2⋆ TFUT10 10-year U.S. Treasury Note futures (surprises) 1 Jarociński (2024)12

1⋆/2⋆ SP500FUT S&P futures (surprises) 1 Jarociński (2024)12

3⋆ BBKMGDP Brave-Butters-Kelley Real Gross Domestic Product 1 FRED3

3⋆ INDPRO INDPRO 7 FRED3

4⋆ CPILFESL CPI: All Items Less Food and Energy 7 FRED3

5⋆ FFR Federal Funds Effective Rate 1 FRED3

1Author’s webpage https://www.acostamiguel.com/replication/MPshocksAcosta.xlsx

2S&P Market Intelligence https://www.spglobal.com/marketintelligence/en/mi/products/us-monthly-gdp-index.html

3Federal Reserve Economic Data https://fred.stlouisfed.org/

4Investing.com https://www.investing.com/indices/us-spx-500-historical-data

5Bureau of Labor Statistics https://www.bls.gov/cpi/data.htm

6https://www.policyuncertainty.com/global monthly.html

7Author’s website https://www.matteoiacoviello.com/gpr.htm

8Federal Reserve Board https://www.federalreserve.gov/econres/notes/feds-notes/ebp csv.csv

9Authors’ website https://www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes

10Federal Reserve Board https://www.frbsf.org/research-and-insights/data-and-indicators/market-based-monetary-policy-uncertainty/

11Author’s website https://silviamirandaagrippino.com/code-data

12Author’s website https://github.com/marekjarocinski/tshocks fomc update

13Federal Reserve Bank of Atlanta https://www.atlantafed.org/cqer/research/wu-xia-shadow-federal-funds-rate

4 Empirics

The empirical section is structured in two parts. I first estimate a small VAR that includes

only the external instruments (monetary policy surprises) and a core set of macroeconomic

variables whose responses to policy are assumed to be stable over time and are identified

using sign restrictions. Therefore, the model consists of variables 1-9 in Table 1. The VAR

features stochastic volatility and student-t idiosyncratic errors, as changes in volatility and

outliers are present in all macro data. This small-scale VAR serves as a baseline model and
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illustrates the effectiveness of the identification strategy that combines sign and instrument-

based restrictions. The results show that conventional monetary policy shocks can be identified

robustly across a wide range of modeling choices, including the definition of instruments (target

and path factors versus observed surprises), the choice of macroeconomic indicators (such as

different measures of output, prices, or interest rates), and the specification of the VAR itself

(including lag length, instrument exogeneity assumptions, and orthogonality conditions).

In the final part of the section, I expand the VAR by incorporating a richer set of

variables, including disaggregated consumer price indices and forward-looking predictor

variables. This model corresponds to the first 30 variables in Table 1. The primary objective

of this extension is to uncover how different components of the CPI responded to monetary

policy after 2021, without imposing strong structural assumptions on the behavior of these

disaggregated series. To this end, I retain the sign restrictions on the core macroeconomic

variables to ensure identification of structural shocks in line with theory, while leaving the

responses of the additional variables unrestricted and free to vary over time. These

unrestricted impulse responses are entirely shaped by the data and are regularized through

the use of shrinkage. This design allows the model to isolate structural shocks using

theory-consistent restrictions on aggregate variables, and to trace out their effects on

disaggregated prices in a flexible and data-driven way.

4.1 Monetary policy: small benchmark model

The first VAR is a small-scale benchmark model containing the two high-frequency

monetary policy surprise factors (the “target” and “path” factors) alongside a core set of

U.S. macroeconomic variables. The core endogenous variables include seven key aggregates

observed at a monthly frequency – real economic activity (output), inflation, the policy rate7

and short-term interest rates, a long-term interest rate, a monetary aggregate, and stock

prices. I set the VAR lag order of this nine-variable VAR to p = 6 (months) in the baseline

7In the benchmark specification I use the (Wu and Xia, 2016) shadow rate.
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and I allow for stochastic volatility and student-t errors to mitigate the influence of outliers

and changes in volatility. However, for the sake of solidifying identification, these seven core

macroeconomic variables have a time-invariant response to monetary policy shocks. In terms

of the VAR formulations already introduced, this assumption corresponds to the model in

equation (13) with the restriction Λt = Λ. This small VAR serves to illustrate conventional

monetary transmission in a controlled setting before moving to a higher-dimensional model.

Identification strategy. I identify two structural monetary policy shocks in this VAR: a

Target shock, corresponding to an unanticipated change in the current policy rate

(conventional policy shock), and a Path shock, corresponding to news about future policy.

The proposed identification strategy combines high-frequency external instruments with sign

and zero restrictions on impact responses of select variables. High-frequency surprises

around FOMC announcements are powerful proxies for policy shocks because they are

measured in a narrow window that filters out most endogenous market responses. However,

using these surprises alone to identify shocks can be problematic if they contain central-bank

information effects or other confounding influences.
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Figure 2: Responses of macro variables to Target (top row) and Path (bottom row) shocks
in benchmark VAR without sign restrictions on macro variables. Solid green lines show the
posterior median response, while dark grey and light grey bands represent the 68% and 90%
posterior credible intervals, respectively; these summarize uncertainty across the posterior
distribution of the structural impulse responses, reflecting both estimation error and parameter
uncertainty.

Indeed, an initial attempt using only the two surprise factors to identify the shocks

(imposing that the Target shock is the only driver of the target factor and the Path shock

the only driver of the path factor, with no other restrictions) produced some counterintuitive

results. As shown in Figure 2, a putative contractionary Target shock (tightening of the

policy rate) did not yield a clearly negative effect on output or inflation – the posterior

median responses of real GDP and PCE inflation were slightly negative but not significant –

and it even led to a decline in the 10-year yield and a rise in real M2, contrary to typical

theory predictions. Similarly, the identified Path shock had little effect on real activity and

was associated with a slight rise in prices on impact. These anomalies echo concerns in the

literature that high-frequency policy surprises may be contaminated by “information shocks”

(when agents infer positive news about the economy from a rate hike) or may suffer from
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Identified shocks Residual shocks
Endogenous vars Target shock Path shock Residual shock 1 Residual shock 2

Target
Path

−−−−−
realGDP
PCEinf
FFR
GS1
GS10

M2REAL
SP500

+
0

−−−−−
−
−
+
+
0
−
−

0
+

−−−−−
NA
0
0

NA
+
NA
NA

0
0

−−−−−
NA
NA
NA
NA
NA
NA
NA

0
0

−−−−−
NA
NA
NA
NA
NA
NA
NA

Table 2: Sign restrictions imposed to core macro variables, which correspond to sign
restrictions to the matrix Λ. Matrix Λ here is constant, not time-varying.

weak instrument problems, leading to implausible impulse responses. Recent studies have

emphasized the need to disentangle pure policy shocks from central bank information

components (e.g., Jarociński, 2024), and the findings here reinforce that message.

To pin down a conventional monetary tightening shock more robustly, I impose additional

sign and zero restrictions on impact responses of the core macro variables, guided by economic

theory. Table 2 summarizes the identification scheme. A Target shock is defined as an

unanticipated rate hike that requires: (i) the target factor (current FFR surprise) to react

positively, (ii) the path factor (expected future rate surprise) to be zero on impact, and (iii)

core macro variables move in line with textbook predictions. With regards to the last point,

output and the price level fall on impact signifying a contraction in demand and disinflationary

pressure, the policy rate and short-term interest rates rise, real money supply falls due to

tightening liquidity and credit conditions, and equity prices fall reflecting higher discount

rates and weaker expected earnings. I leave the response of the 10-year yield unrestricted;

prior intuition would suggest it likely rises or remains flat, as a monetary tightening can

either raise long-term rates via expectations of future short rates or, in some cases, lower

them if it strongly depresses future growth/inflation expectations. For the Path shock, I

impose: (i) zero impact on the current policy rate (target factor) and a positive impact on
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the path factor by definition, and (ii) no contemporaneous change in output and zero or

muted impact on inflation.8 A positive Path shock raises the 10-year yield on impact, since

this shock should shift expectations of the rate trajectory. Other variables’ responses to the

Path shock are left largely unrestricted. These hybrid identification restrictions – combining

external instrument relevance with sign constraints on macroeconomic aggregates – ensure that

the Target shock recovered corresponds to a standard contractionary monetary policy shock

(stripped of information effects), while the Path shock is identified as a distinct structural

disturbance capturing revisions to expected future policy.9

8I do not force inflation down for a path shock, allowing the data to determine if this shock acts like news
of future policy.

9On top of these restrictions, in Table 2 I specify two residual shocks that are not identified. This is due
to the fact that in the proposed VAR model the number of shocks assumed not only affects identification, but
also estimation accuracy. The number of shocks corresponds to the number of the estimated factors ft, which
in turn affect how precisely-estimated is the “true” VAR covariance matrix Ω. Note that these additional
residual factors need not be identified; the common component Λft of these two factors is identified and this
is sufficient for estimation using MCMC.
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Figure 3: Responses of macro variables to Target (top row) and Path (bottom row) shocks
in benchmark VAR with sign restrictions on macro variables that follow Table 2. Solid green
lines show the posterior median response, while dark grey and light grey bands represent the
68% and 90% posterior credible intervals, respectively; these summarize uncertainty across
the posterior distribution of the structural impulse responses, reflecting both estimation error
and parameter uncertainty.

Figure 3 presents the impulse response functions (IRFs) of the core seven macro variables

to a contractionary monetary policy shock under the preferred identification (combining the

surprise instruments with sign restrictions). The responses are economically sensible and in

line with conventional monetary transmission mechanisms and previous empirical evidence.

Overall, the small VAR results demonstrate classic monetary transmission channels at work.

A true contractionary policy shock (Target factor) leads to: higher short-term interest rates,

a broad-based tightening of financial conditions (less money, lower equity values, likely

higher credit spreads), a decline in aggregate demand (output falls) and a moderation in

inflation. These outcomes accord with the broad consensus from decades of VAR studies and

with standard New Keynesian theory (monetary tightening moves the economy along the

aggregate demand curve, and the Phillips curve translates the induced slack into lower
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inflation). Importantly, these effects are estimated on data that extend through the recent

high-inflation episode of 2021–2022, suggesting that even in that atypical period, the

fundamental channels remained operative. The Path shock, meanwhile, illustrates the more

complex interplay of policy signaling and expectations. While it does not strongly contract

the economy on impact, its existence highlights that not all Fed actions map neatly onto

“surprise tightenings” – some reflect information updates.

In the subsequent analysis with a larger VAR this identification of two separate monetary

shocks is maintained. Nevertheless, the focus there is on the conventional Target shock as

the driver of systematic contractionary policy actions, while acknowledging the Path shock as

an important but less clear-cut disturbance. Before moving to the large-scale model, I verify

that the small VAR results are robust to various alternative specifications. In the Online

Supplement I report detailed robustness checks, but I summarize them briefly here. First,

increasing the lag order to p = 12 or using tighter/slacker priors yields very similar IRFs,

indicating that the baseline lag length (6) is sufficient to capture the dynamics. Second, I

considered alternative identifying assumptions suggested by Jarociński and Karadi (2020):

(a) restricting the lagged influence of the surprises on macro variables (Φym = 0, so that

the high-frequency shocks only enter contemporaneously and not in lagged form), and (b)

conversely restricting the feedback of macro shocks on the surprise series (Φmm = 0). Imposing

these did not materially change the identified IRFs of interest – the output and inflation

responses to a Target shock remained significantly negative and of similar magnitude. Third,

replacing the (Wu and Xia, 2016) shadow rate with the effective Federal funds rate does

not alter the qualitative pattern of responses of output and inflation, although the response

of the 10-year rate becomes significantly negative. Finally, allowing the Target and Path

shocks to be correlated (relaxing the orthogonality assumption) did not appreciably affect the

impulse responses, though for our baseline I keep them orthogonal for a cleaner structural

interpretation. All these checks bolster the confidence that the small VAR captures a genuine

monetary tightening shock and its transmission in a theoretically consistent manner. In what
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follows, I build on this foundation to examine a richer array of variables and potential time

variation in responses.

4.2 Empirical results: large VAR with time-varying disaggregated

CPI responses

I now turn to a large-scale Bayesian VAR that incorporates a much broader information set,

including disaggregated price indices and financial market indicators. The primary goal of

this extension is to study how a monetary policy shock propagates across different sectors and

over time – in particular, how various components of the consumer price index (CPI) respond

(heterogeneously) to policy tightening, and how financial conditions and expectations evolve

alongside. By expanding the variable set, we also allow the possibility for the effects of

monetary policy to change over the sample, since certain relationships may not be constant in

the face of structural changes (e.g., the shift from a low-inflation regime to the high-inflation

environment after 2021). The large VAR includes 30 monthly variables: the same two policy

surprise factors and seven core macro variables from the small VAR, plus 13 additional macro-

financial predictor series and the eight disaggregated CPI sub-indices. The benchmark case

uses p = 2 lags of all variables, as this choice yields more stable and interpretable impulse

response functions. The Online Supplement shows that results are qualitatively unchanged

when p = 6.

The identification of the monetary policy shocks in the large VAR follows the same scheme

as in the small VAR: I impose the sign and zero restrictions on the impact responses of the

core macro block (real activity down, inflation down for the Target shock; policy rate up, etc.,

as detailed earlier in Table 2), and similarly use the high-frequency target/path instruments.

No additional sign restrictions are imposed on the new variables – instead, I “let the data

speak” for how those variables respond. This design – identify shocks with a theoretically

grounded core subset, but leave the rest unrestricted – is akin to a factor-augmented VAR

or a large panel SVAR analysis. It ensures that the monetary policy shock that is recovered
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in the large model is directly comparable to the one in the small model, while leveraging the

larger information set to observe richer dynamics and potential time variation.

Figure 4: Responses of core macro variables to Target and Path shocks in the large VAR. Λ
is constant for these variables, therefore, IRFs are fixed over the sample.

Validating core responses in the large VAR. I first verify that the introduction of many

additional variables, and allowing for time-varying coefficients, does not distort the baseline

monetary transmission mechanism. Figure 4 plots the impulse responses of the core seven

macro variables to the Target and Path shocks as estimated in the large VAR. These core

responses are restricted to be constant over time, hence the figure represents the common

response for the entire sample. Reassuringly, the core IRFs are fairly similar to those from the

small VAR (Figure 3). A contractionary Target shock in the large VAR still produces a clear

downturn in real activity, a gradual decline in inflation, an uptick in short-term interest rates,

and tightening of money and equity markets, all with magnitudes and timing comparable to

the small-model results. In fact, the peak output and inflation effects are nearly identical,

indicating that the identification is stable and the additional variables have not introduced
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any ambiguity about the nature of the shock. This consistency is important: it implies that

our shock remains a “conventional” monetary policy shock, and any new insights in the large

VAR will come from observing the behavior of the additional variables rather than from

redefining the shock itself. It also highlights that the Bayesian shrinkage and time-variation

do not undermine the core inference; rather, the prior helps to integrate the extra information

without losing the signal from the primary series. In summary, the large VAR’s core results

pass a key sanity check giving confidence to proceed with analyzing the richer dynamics.

Figure 5: Responses of all other macro variables to Target shock in the large VAR. Λ is
time-varying for these variables, therefore, plot gives responses at time T .

27



Figure 6: Responses of all other macro variables to Path shock in the large VAR. Λ is time-
varying for these variables, therefore, plot gives responses at time T .

Effects on broader financial conditions and expectations. Expanding the VAR to

include more financial indicators allows us to paint a more detailed picture of how monetary

policy tightening percolates through financial markets and expectations. Figure 5 shows the

impulse responses at the end of sample (May 2024) of all the additional variables to a Target

shock, while Figure 6 does the same for a Path shock.10

I focus first on the Target shock (the conventional tightening). In short horizons the real

variables have the correct sign: real consumption falls significantly, while unemployment

rises and housing starts fall, although very marginally and insignificantly. A rate hike makes

lenders and investors more risk-averse, leading them to demand higher premiums on risky

debt, which in turn tightens credit supply to firms. The evidence in Figure 5 confirms that

the monetary shock triggers a cascade where financial conditions deteriorate significantly.

The Excess Bond Premium (EBP) captures the risk-related component of credit spreads

10Note that time-varying impact responses to these variables are analyzed later.
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beyond expected defaults, and it typically rises after a contractionary monetary policy shock

as investors become more risk-averse and demand higher compensation for holding corporate

debt. Volatility (VIXCLS) and uncertainty measures (USEPU, MPU) also rise, reflecting

increased trading volume and forward-looking uncertainty.

The responses to a Path shock (Figure 6, bottom panels) differ qualitatively, underscoring

that this shock carries an informational element. Importantly, a Path shock does not cause

credit spreads to widen – in fact, if anything, the estimates suggest a slight narrowing of

corporate spreads immediately after a positive Path shock. At the same time, equity prices

tend to increase on impact as the stock market often rallies in response to what appears to

be a hawkish signal about the future. These financial reactions are consistent with a scenario

in which the Fed’s guidance about future tightening is interpreted as a sign of confidence

in economic strength. In other words, the Path shock behaves much like a positive “news”

shock about the economy. This mirrors the Jarociński and Karadi (2020) result that an

information shock (good news) leads to higher stock prices and lower credit spreads even as

rates rise. In terms of other effects, a Path shock results in a non-significant increase in real

consumption and housing starts, a significant currency depreciation, and decrease of economic

policy uncertainty and stock market volatility. Unsurprisingly, monetary policy uncertainty

does not increase, rather it rises significantly to this central-bank induced shock.

In summary, the large VAR confirms that the two identified shocks have distinct financial

market and expectations footprints: the Target shock is an all-around contractionary

disturbance with immediate tightening of financial conditions, while the Path shock is more

of an expectations shock that can even be interpreted as “good news” at the moment of

impact, with its contractionary bite coming later.

Heterogeneous and time-varying inflation responses. A central motivation for the

large VAR is to examine how different components of inflation react to monetary policy

shocks, and whether these reactions have changed in the recent high-inflation period.

29



Figure 7: Impact responses of disaggregated CPI variables to Target and Path shocks.

Figure 8: Responses over time and over horizons of disaggregated CPI variables to a Target
shock.
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Figure 7 presents the impact responses (at time t = 0) of the eight disaggregated CPI

categories to the Target and Path shocks, estimated at the end of our sample (i.e. for a shock

occurring in May 2024). Figure 8 goes further, showing the evolution of the entire impulse

response function of these CPI components to a Target shock over time (plotting the median

responses at various horizons for shocks in different years).

Several noteworthy patterns emerge. First, the impact responses in Figure 7 reveal

considerable heterogeneity across sectors in the instantaneous effect of a monetary

tightening. A contractionary Target shock immediately lowers the rate of inflation in some

categories, while others show virtually no reaction on impact. Rent inflation (CPI: Housing),

which is a notoriously sticky and inertia-driven component of total inflation, shows

essentially no movement on impact. Landlords do not reprice rental contracts in direct

response to a rate hike; instead, the effect of monetary policy on rents operates with a long

lag, via cooling of the housing market and slower rent growth over time. I indeed find in the

three-dimensional IRFs that the response of rent inflation to a Target shock, while negligible

on impact, becomes slightly negative a year or two after the shock – indicating that

monetary tightening eventually tempers rent increases, but only gradually. Core goods

prices (e.g., furnishings, electronics, vehicles), which are more interest-sensitive because they

often involve credit financing (auto loans, for instance) and have more flexible pricing than

services, show a notable immediate decline. For instance, the price index for vehicles and

durable goods drops on impact after the Target shock, reflecting a sudden pullback in

demand; higher loan rates discourage car and appliance purchases, leading retailers and

manufacturers to offer discounts or slow price increases to stimulate sales. Meanwhile, food

prices, which can be volatile but also heavily influenced by supply (weather, global

commodity markets), show a very mild impact response – perhaps a slight dip, but within

credible bands that include zero. Food and beverages may not immediately respond to

domestic monetary conditions, except insofar as general demand changes slowly feed through

to lower markups in food retail.
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Turning to the Path shock impact responses: these are generally much smaller in absolute

magnitude (often not significantly different from zero) for all CPI components. This again

underscores that an expected future tightening alone does not immediately move prices – likely

because neither aggregate demand nor costs are materially affected on impact. If anything,

we can see a hint that a positive Path shock might cause a slight uptick in some prices

like stock-sensitive goods or perhaps energy, consistent with the idea that it signals stronger

future activity. However, these estimates are not very precise, and we should not ascribe

too much economic significance to small positive bumps. The key takeaway is that unlike

the Target shock, the Path shock does not uniformly push prices down at impact. Thus,

from a policymaker’s perspective, an announced future hike (without current action) is not a

substitute for a current hike in terms of immediately curbing inflation – its influence on prices

will come later, mediated by expectations and subsequent activity changes.

Perhaps the most interesting insights come from the time variation in the Target shock

responses (Figure 8). We find evidence that the responsiveness of certain inflation components

to monetary policy shocks has evolved over the last few decades, especially in the post-2010

period and into the post-pandemic inflation surge. Notably, the decline in durable goods

inflation after a monetary tightening has become more pronounced in the recent period. In

the 1990s and early 2000s, a Target shock of similar size might have produced only a modest

downturn in durable goods prices, partly because inflation was low and stable and firms

were reluctant to cut prices. However, by 2022–2023, after the pandemic disruptions, our

model infers that a contractionary shock yields a larger immediate reduction in durable goods

inflation. One interpretation is that after the pandemic’s supply-driven price spikes (especially

in vehicles and goods due to supply chain issues), there was pent-up disinflationary pressure

once demand slowed. So when the Fed started tightening aggressively in 2022, it popped the

“demand bubble” for goods, causing a faster normalization of goods prices (indeed, used car

prices, for example, started falling in late 2022). Our time-varying IRFs capture this as a

bigger impact of monetary shocks on goods inflation in the recent period.
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Another dimension of heterogeneity is the peak timing of responses. Some components

(energy, core goods) hit their maximum price decline within 3–6 months of the shock,

whereas others (services) only show a significant change after 12–18 months. This staggered

timing means that aggregate CPI inflation – a weighted sum of these – may exhibit a

multi-phase reaction: an initial dip driven by energy and goods, potentially offset if energy

prices rebound, and a later, more persistent slowing driven by services. This could explain

why policymakers often see “headline” CPI inflation fall relatively quickly after tightening

(as energy and food stabilize or drop), but “core” services inflation can remain high for a

while, necessitating continued tight policy until it too comes down. Our large VAR results

provide empirical backing for this narrative, which has been evident in the post-2021

episode: the Fed’s tightening in 2022 quickly lowered commodity-sensitive inflation by 2023,

but core services inflation only started decelerating toward late 2023 and 2024.

Importantly, despite these differences in timing and magnitude, virtually all CPI

components eventually move in the direction of disinflation in response to a contractionary

Target shock (with the possible exception of certain idiosyncratic cases like medical care

prices that might be governed by institutional factors). That is, monetary policy is a blunt

tool that ultimately affects broad inflation – but the path it takes through various prices is

uneven. This underscores the value of a large VAR approach: it lets us observe the rich

cross-sectional detail behind the aggregate responses.

5 Conclusions

This paper develops a novel Bayesian inference framework for identifying monetary policy

shocks in large-scale VARs, addressing longstanding challenges in structural identification.

By combining high-frequency surprises from financial markets with economically motivated

sign restrictions, the proposed method delivers robust and interpretable structural shocks, even

in high-dimensional settings. A key innovation is the integration of this hybrid identification
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strategy into a scalable Gibbs sampler that accommodates time-varying responses and fat-

tailed disturbances, ensuring reliable inference in the presence of structural breaks and outliers.

Empirically, the paper offers new insights into the transmission of conventional monetary

policy in the post-pandemic U.S. economy. By tracing the dynamic effects of interest rate

surprises on disaggregated components of the consumer price index (CPI), the results highlight

substantial heterogeneity in the speed and magnitude of inflation responses. While core goods

prices exhibit swift and sizable declines following a rate hike, services (particularly housing)

respond only gradually. These differences have become more pronounced during the 2022–24

inflationary episode, underscoring shifts in the monetary transmission mechanism and the

importance of disaggregated analysis.

More broadly, the findings affirm that conventional monetary policy retains its

effectiveness in shaping inflation dynamics, even in periods marked by elevated uncertainty

and atypical price behavior. For policymakers, this underscores the importance of

sector-specific diagnostics when assessing the stance and expected impact of policy. For

researchers, the methodological framework provides a general-purpose tool for structural

analysis in large systems, adaptable to a wide range of macroeconomic questions beyond

monetary policy.
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Bańbura, M., Giannone, D., and Reichlin, L. (2010). Large Bayesian vector auto regressions.

Journal of Applied Econometrics, 25(1):71–92.

Bauer, M. D. and Swanson, E. T. (2023). An alternative explanation for the “Fed information

effect”. American Economic Review, 113(3):664–700.

Bernanke, B. S. and Boivin, J. (2003). Monetary policy in a data-rich environment. Journal

of Monetary Economics, 50(3):525–546. Swiss National Bank/Study Center Gerzensee

Conference on Monetary Policy under Incomplete Information.
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A Technical Appendix

A.1 A Gibbs sampler for the constant parameter model

Recall the large monetary policy VAR with a factor structure in the residuals, as given in

equation (6) of the main text. For convenience, define y⋆
t = [m′

t, y
′
t]
′ as the N × 1 vector

collecting the m high-frequency instruments and n macroeconomic variables (so N = m+ n).

The VAR for y⋆
t can be written as

y⋆
t = Φxt + Γ⋆ ft +W ⋆1/2 ηt,

where xt contains the intercept and lags (as in a standard VAR), Φ is the N × k matrix of

VAR slope coefficients (with k the number of regressors per equation), ft is an r × 1 vector

of latent factors (structural shocks) with r ≪ N , and ηt is an N × 1 idiosyncratic noise

vector. We collect the factor loadings into the N × r matrix Γ⋆ =

Γ

Λ

, stacking the m× r
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loadings Γ for the instrument equations and the n × r loadings Λ for the macroeconomic

equations. The idiosyncratic disturbances have covariance matrix W ⋆ = diag(W , Σ), with

W = diag(w1, . . . , wm) and Σ = diag(σ2
1, . . . , σ

2
n) for the instrument and macro equations

respectively. For notational simplicity in what follows, let σ2
i denote the ith diagonal element

of W ⋆ (covering both wi for i ≤ m and σ2
i for i > m). By construction, we treat all variables

in y⋆
t as endogenous in the VAR.

We impose a hierarchical shrinkage prior on the VAR coefficients and independent Gaussian

(or truncated Gaussian) priors on the factor loadings. Specifically, for each equation i =

1, . . . , N of the VAR, we let ϕi denote the k × 1 vector of regression coefficients (the ith row

of Φ), and Γ⋆
i denote the 1× r vector of factor loadings (the ith row of Γ⋆). The prior is given

by:

ϕi | σ2
i , τ

2
i ,Ψ

2
i ∼ Nk

(
0, σ2

i τ
2
i Ψ

2
i

)
, Ψ2

i = diag
(
ψ2
i,1, . . . , ψ

2
i,k

)
, (A.1)

ψi,j ∼ C+(0, 1), j = 1, . . . , k, (A.2)

τi ∼ C+(0, 1), (A.3)

Γ⋆
ij ∼



N
(
0, hij

)
I(Γ⋆

ij > 0), if Sij = +1,

N
(
0, hij

)
I(Γ⋆

ij < 0), if Sij = −1,

δ0(Γ
⋆
ij), if Sij = 0,

N
(
0, hij

)
, otherwise,

j = 1, . . . , r, (A.4)

ft ∼ Nr(0, Ir), (A.5)

σ2
i ∼ Inv-Gamma(ρ

i
, κi). (A.6)

Equation (A.1) is the Horseshoe prior of Carvalho et al. (2010) on the VAR coefficients: ψi,j

and τi are local and global shrinkage parameters (with half Cauchy priors), so that ϕi |

σ2
i , τi, ψi,j is distributed as a multivariate normal with a diagonal covariance matrix σ2

i τ
2
i Ψ

2
i .

Equations (A.2)–(A.3) are the half Cauchy priors for these shrinkage hyperparameters. In
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(A.4), we define Sij as an optional sign indicator for each factor loading: if Sij = +1 (−1),

we impose a priori that Γ⋆
ij must be positive (negative) by using a truncated normal prior

restricted to (0,∞) ((−∞, 0)); if Sij = 0, we impose a zero restriction (point mass at 0);

otherwise Sij is empty and the prior is standard Gaussian with variance hij. In practice

we set hij = 4 as a relatively diffuse prior variance for all unrestricted loadings. Finally,

(A.5)–(A.6) state that each latent factor is a priori standard normal and each idiosyncratic

variance has an inverse gamma prior. We choose hyperparameters ρ
i
= 1 and κi = 0.01 for all

i, which is a weakly informative prior favoring small σ2
i (this helps regularize the estimation

of a high-dimensional covariance matrix).

Given these priors and the observed data {y⋆
t }Tt=1, Bayesian inference is carried out by

Gibbs sampling. The algorithm sequentially draws from the complete conditional posterior

of each block of parameters in turn. We label this the factor sign restrictions (FSR)

sampler, which proceeds as follows:

1. Sample Φ (VAR coefficients). For each equation i = 1, . . . , N , draw ϕi from its

conditional normal posterior. Because the VAR can be written equation-by-equation as

y⋆i,t = ϕi xt + Γ⋆
i ft + σi ηi,t,

and ft is currently treated as given, this is a standard linear regression for ϕi. The

prior for ϕi in (A.1) is normal with covariance σ2
i τ

2
i Ψ

2
i . Let ỹi,t = y⋆i,t − Γ⋆

i ft denote

the regression residual for equation i after removing the factor component. Then the

conditional posterior is:

ϕi | Φ−i, Γ
⋆, W ⋆, f1:T , y

⋆
1:T ∼ Nk

(
V i

( T∑
t=1

σ−2
i x′

t ỹi,t
)
, V i

)
, (A.7)

where V
−1

i = Σ−1
ϕi

+
∑T

t=1 σ
−2
i x′

txt and Σϕi
= σ2

i τ
2
i Ψ

2
i is the prior covariance of ϕi.

Intuitively, V i is the posterior covariance, given by the prior precision Σ−1
ϕi

plus the
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data precision 1
σ2
i
X ′X, and the posterior mean is a precision-weighted combination of

the OLS estimate and prior mean 0. We sample ϕi efficiently using the algorithm of

Bhattacharya et al. (2016).

2. Sample local shrinkage ψi,j. For each i = 1, . . . , N and j = 1, . . . , k, update the

Horseshoe local scale ψi,j via slice sampling (Neal, 2003). We introduce the auxiliary

variable ηij = 1/ψ2
i,j and draw as follows:

(a) Set ηij = 1/ψ2
i,j (using the most recent draw of ψi,j).

(b) Draw u ∼ U
(
0, 1/(1 + ηij)

)
.

(c) Draw a new ηij from its conditional density, which is proportional to exp{−ϕ2
i,j

2σ2
i
ηij}

truncated to ηij >
u

1−u
. Finally set ψi,j = 1/

√
ηij.

(Step 2 exploits the scale-mixture representation of the half-Cauchy distribution; see

Neal, 2003 for details.)

3. Sample global shrinkage τi. For each equation i = 1, . . . , N , update the Horseshoe

global scale τi via slice sampling:

(a) Set ξi = 1/τ 2i .

(b) Draw v ∼ U
(
0, 1/(1 + ξi)

)
.

(c) Draw ξi from its conditional density, which is proportional to

ξ
−(k+1)/2
i exp{− ξi

2σ2
i

∑k
j=1(ϕi,j/ψi,j)

2} for ξi >
v

1−v
. Then set τi = 1/

√
ξi.

(In step (c) we sample ξi by inverting the incomplete gamma function as in Bhattacharya

et al., 2016.)

4. Sample factor loadings Γ⋆. Draw each element of the loading matrix from its

conditional posterior, which is Gaussian or truncated Gaussian. Conditional on the
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current values of {Φ,f1:T ,W
⋆}, the latent factor model for equation i is

y⋆i,t − ϕi xt = Γ⋆
i ft + σi ηi,t,

with prior Γ⋆
i ∼ Nr(0, H i) where H i = diag(hi1, . . . , hir) as in (A.4). Let

ŷi,t ≡ εi,t = y⋆i,t − ϕi xt be the ith equation’s residual after removing the VAR

component. Stacking over t = 1, . . . , T , the conditional likelihood for Γ⋆
i is as in a

standard Bayesian static factor model: the posterior for Γ⋆
i is normal with covariance

H i =
(
H−1

i +
∑T

t=1 σ
−2
i f ′

tft

)−1

and mean H i

(∑T
t=1 σ

−2
i f ′

t ŷi,t

)
. Denote by λij and

hij the jth element of this posterior mean and variance, respectively, for loading Γ⋆
ij.

We sample each Γ⋆
ij one-at-a-time from this multivariate normal, imposing any sign or

zero restrictions via univariate truncation. In particular, conditioning on all other

loadings Γ⋆
i,−(j) in row i, the scalar Γ⋆

ij has a univariate normal conditional posterior,

Γ⋆
ij | Γ⋆

i,−(j), Φ, W
⋆, f1:T , y

⋆
1:T ∼ N

(
λij − hij

∑
ℓ̸=j

h
−1

iℓ (Γ
⋆
iℓ − λiℓ), hij

)
,

truncated to the interval (aij, bij) as appropriate, where

(aij, bij) =



(−∞, 0), Sij = −1,

(0, ∞), Sij = +1,

(0, 0), Sij = 0,

(−∞, ∞), otherwise.

Here (0, 0) denotes a degenerate distribution at zero (for Sij = 0, we simply set Γ⋆
ij =

0). We sample each restricted element using the efficient univariate truncated normal

generator of Botev (2017). Unrestricted loadings (Sij empty) are drawn directly from

the (untruncated) normal posterior. This element-by-element Gibbs step (see Geweke,

1996) ensures that any sign and zero restrictions on the rows of Γ⋆ are satisfied at each
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draw.

5. Sample latent factors ft. Draw each factor vector ft for t = 1, . . . , T from its

conditional multivariate normal posterior. Conditional on all other parameters, the

model for ft is

ŷ⋆
t = Γ⋆ ft + vt,

where ŷ⋆
t = y⋆

t −Φxt is the N × 1 vector of current residuals (after removing the VAR

fit), and vt = W ⋆1/2ηt has covariance W
⋆. Combining the Gaussian likelihood with the

prior ft ∼ N (0, Ir) yields:

ft | Γ⋆, W ⋆, Φ, y⋆
1:T ∼ Nr

(
GΓ⋆′(W ⋆)−1ŷ⋆

t , G
)
, (A.8)

with G
−1

= Ir +Γ⋆′(W ⋆)−1Γ⋆. This r× r system is of low dimension, so sampling ft is

fast. After obtaining draws {ft}Tt=1, we post-process the T × r matrix F = (f1, . . . ,fT )
′

to ensure the factors (interpreted as structural shocks) are orthonormal. In particular,

we apply a Gram-Schmidt orthogonalization to the columns of F , and normalize each

column to have unit variance (and, if desired, multiply by −1 to enforce any overall sign

convention). This post-processing step resolves the sign and scale indeterminacy of the

factors without loss of generality.

6. Sample idiosyncratic variances σ2
i . Finally, update each variance σ2

i (the ith

diagonal element of W ⋆) from its inverse-gamma conditional posterior. Given current

draws of {Φ,Γ⋆,f1:T}, the residuals εi,t = y⋆i,t − ϕixt − Γ⋆
ift are observable. The

conditional posterior for σ2
i combines the prior (A.6) with the likelihood∏T

t=1N (εi,t | 0, σ2
i ). This yields

σ2
i | Φ, Γ⋆, f1:T , y

⋆
1:T ∼ Inv-Gamma

(
ρ
i
+
T

2
, κi +

1

2

T∑
t=1

ε2i,t

)
. (A.9)

Thus each σ2
i is drawn by conjugacy (closed-form inverse-gamma).
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This Gibbs sampler iterates over steps 1–6 until convergence. Steps 1, 4, and 5 are

standard conditional posteriors for linear Gaussian models (VAR and factor model); step 2–3

are specific to the Horseshoe prior; and step 4 implements any desired sign/zero restrictions

by univariate truncation. Thinning of the MCMC draws (only saving every sth draw, for

some s > 1) is recommended to mitigate any residual autocorrelation in the Markov chain,

since the latent factors and loadings enter the likelihood multiplicatively and can be slightly

negatively correlated in the Gibbs updates. Convergence and mixing of the sampler can be

monitored with standard MCMC diagnostics.

A.2 Adding time-variation: sampling time-varying loadings and

volatilities

We now extend the algorithm to handle time-varying factor loadings and stochastic

volatility, as described in Section 4 of the main text. The time-varying parameter version of

the model (see equations (13)–(14)) allows the macroeconomic impact matrix Λt and

idiosyncratic variances Σt = diag(σ2
1,t, . . . , σ

2
n,t) to evolve over time. In particular, Λt and the

log-volatilities follow independent random walks:

vec(Λt) = vec(Λt−1) + ξt, (A.10)

log(σ2
i,t) = log(σ2

i,t−1) + δi,t, i = 1, . . . , n, (A.11)

with ξt ∼ N (0, Q) and δi,t ∼ N (0, ω2
i ). Here Q is an (nr)× (nr) covariance matrix governing

the innovations in the n×r loading matrix, and ω2
i is the variance of shocks to the log variance

of series i. Equation (A.10) implies a prior belief that Λt changes gradually, centered around

its previous value Λt−1 (similarly for log σ2
i,t around log σ2

i,t−1). This is the familiar state-space

formulation for time-varying parameters, which is typically handled via Kalman filtering and

smoothing. In our high-dimensional setting, however, it is more computationally convenient

to use the stacked regression approach of Korobilis (2021). That is, we rewrite the entire
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sample in a single regression equation where the time-varying loadings enter as additional

static coefficients to be estimated.

To see this, note that we can integrate the state equations to express the loadings at time

t as Λt = Λ0 +
∑t

s=1 ξs. For simplicity, assume the initial prior mean is Λ0 = 0 (one can also

treat Λ0 as an additional parameter to estimate, but setting it to zero with large variance is

practically equivalent). Then Λt =
∑t

s=1∆Λs, where we define ∆Λt ≡ ξt ∼ N (0,Q). The

observation equation for y⋆
t can be written as

y⋆
t = Φxt + [Γ, Λt]ft +W

⋆1/2
t ηt,

where W ⋆
t = diag(W , Σt). Plugging in Λt =

∑t
s=1 ∆Λs, we obtain

y⋆
t = Φxt + Γft +

t∑
s=1

∆Λs ft +W
⋆1/2
t ηt.

Now consider all T observations together. By stacking the above equation for t = 1 to T , we

can represent the model in the form



y⋆
1

y⋆
2

...

y⋆
T


︸ ︷︷ ︸
Y ⋆

=



x1 0 · · · 0

0 x2 · · · 0

...
...

. . .
...

0 0 · · · xT


︸ ︷︷ ︸

X⋆



Φ′

Φ′

...

Φ′


︸ ︷︷ ︸
Φ⋆

+



f1 0 · · · 0

f2 f2 · · · 0

...
...

. . .
...

fT fT · · · fT


︸ ︷︷ ︸

F ⋆



Γ′

∆Λ′
1

∆Λ′
2

...

∆Λ′
T


︸ ︷︷ ︸

Θ

+



v1

v2

...

vT


︸ ︷︷ ︸
v

, (A.12)

where vt = W
⋆1/2
t ηt and Θ collects all time-invariant and time-varying loading parameters.

Equation (A.12) is simply a linear regression in which Φ⋆ (which appears repeated for each

t) and Θ are the unknown coefficients, and X⋆ and F ⋆ are known matrices constructed from

the data and latent factors. Importantly, this stacked system is observationally equivalent to

the state-space formulation (A.10)–(A.11), but now all time-varying loadings enter linearly.
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We can therefore apply the same conjugate Bayesian steps developed for the constant-loading

model to jointly sample Γ and {∆Λt}Tt=1 as if they were “static” regression coefficients.

In practice, we augment the Gibbs sampler of the previous subsection with an expanded

Step 4 that draws the entire trajectory of factor loadings. More specifically, we replace step 4

by:

4′. Sample Γ and ∆Λ1:T . Conditional on {Φ, f1:T , W
⋆
1:T}, we sample the initial loading

matrix Γ (for instruments) and all loading increments ∆Λt (for macro variables, t =

1, . . . , T ) in one block. We assign each ∆Λt the prior N (0,Q) (as in (A.10)), and Γ

retains the same Gaussian/truncated Gaussian prior as before (see (A.4)). Given the

linear stacked model (A.12), the joint conditional posterior of [Γ, ∆Λ1, . . . ,∆ΛT ] is

Gaussian (subject to truncation for any restricted elements). Its mean and variance

can be derived exactly as in the constant-loading case, treating F ⋆ as the “regressor

matrix” and Q as the prior covariance for the coefficients ∆Λt. Rather than write

out the enormous formula, we note that the computation can be performed efficiently

by exploiting the block structure in (A.12). In particular, for each equation i (each

row of the loading matrices), the conditional posterior of [Γi,·, ∆Λi,1, . . . ,∆Λi,T ] is a

multivariate normal with covariance

H i =
(
H−1

i +
T∑
t=1

σ−2
i,t f ′

tft

)−1

,

and mean H i

(∑T
t=1 σ

−2
i,t f ′

t ŷi,t

)
, where ŷi,t = y⋆i,t−ϕixt is the current regression residual

(and H i is the prior covariance of [Γi,·, ∆Λi,1, . . . ,∆Λi,T ], block-diagonal with entries hij

for Γij and the corresponding elements ofQ for ∆Λi,t,j). This has the same form as in the

static case, except that it pools information from all time periods 1 . . . T when computing

the sum of squares
∑

t f
′
tft and cross-product

∑
t f

′
t ŷi,t. We then sample each element of

Γ and ∆Λt sequentially from this joint normal, using univariate truncation for any sign-

restricted entries (exactly as described in step 4 above). Note that if a particular factor

9



loading is required to remain constant over time (for example, to enforce identification

via a key instrument or aggregate—see discussion in Section 4.1 of the main text), one

can simply impose ∆Λi,t,j = 0 for all t on that element (a zero restriction on every

increment). In this case, the loading for series i on factor j stays equal to its initial

value Γ⋆
ij in all periods.

Steps 1, 2, 3, 5, and 6 of the Gibbs sampler are modified only in minor ways for the

time-varying specification. Step 1 (sampling Φ) and step 5 (sampling ft) are implemented

exactly as in the constant case, except that Λt (the current loading matrix for macros) is used

when computing the residuals ỹi,t and ŷi,t at time t. Step 2 and 3 (Horseshoe updates for

ψi,j and τi) are unchanged. Step 6 now involves sampling the entire path of each stochastic

volatility σ2
i,t. Given draws of all other parameters, the observation equation for series i can be

written as εi,t = σi,tηi,t, where εi,t = y⋆i,t −ϕixt −Λi,tft is the residual and ηi,t ∼ N(0, 1). The

log-volatility state equation is (A.11). We sample {log(σ2
i,t)}Tt=1 using simulation smoothing

methods for non-linear state-space models. In particular, we employ the auxiliary mixture

sampler of Kim et al. (1998) to approximate the χ2
1 likelihood of η2i,t as a mixture of normals,

and then draw the log-variance path via forward-filtering backward-sampling (FFBS). This

yields draws from

log(σ2
i,1:T ) | {εi,t}Tt=1, ω

2
i

for each i = 1, . . . , n. (In our implementation we fix the innovation variances ω2
i at modest

values, e.g. 0.02, to restrict volatility to evolve slowly; one could instead place hyper-priors

on the ω2
i and sample them in an outer Gibbs loop if desired.) The end result of step 6′ is a

draw of each time-varying idiosyncratic variance σ2
i,t for t = 1, . . . , T .

Putting everything together, the extended Gibbs sampler alternates between: (i)

sampling the VAR coefficients Φ (step 1), Horseshoe parameters (steps 2–3), latent factors

ft (step 5), and then (ii) sampling the time-varying loading matrices (step 4′) and stochastic

volatilities (step 6′). By using the transformed-model approach in (A.12), we are able to
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draw the entire trajectory of Λt in one block using simple regression formulas. This

approach is computationally efficient even in large dimensions, and it automatically

incorporates shrinkage on the loading drift: for example, one can treat the prior covariance

Q in (A.10) as unknown and assign it a Horseshoe prior just as we did for Φ (shrinking the

elements of ∆Λt toward zero, which effectively shrinks Λt toward constant trajectories). In

our implementation we follow this idea by factorizing Q = diag(q1, . . . , qnr) (assuming

independent random walk increments for each loading) and placing a hierarchical Horseshoe

prior on each qℓ (akin to (A.1)–(A.3)). The conditional posterior draw of ∆Λt in step 4′ is

then obtained by substituting the updated Q into H i. We refer the reader to Korobilis

(2021) for further technical details on this shrinkage implementation. Conceptually, the key

point is that—apart from the additional state-space sampling for log σ2
i,t—our algorithm for

the time-varying model uses the same conditional posteriors derived for the constant model,

simply applied to an augmented parameter vector. This allows the large-scale VAR with

time-varying impact matrix and stochastic volatility to be estimated with very little extra

computational cost, while flexibly incorporating structural identification via sign and zero

restrictions as described above.

B Additional empirical results

B.1 Robustness in the small VAR

Section B of the Online Supplement assembles a battery of sensitivity exercises that all point to

the same conclusion: the contractionary Target shock that we identify remains economically

interpretable and quantitatively stable across a wide range of modelling and identification

choices. Below I organise the evidence into four thematic groups, mirroring the order of the

figures and tables in the supplement.

Alternative sign restriction sets
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� Figure B1 and Table B2 replicate the nine variable VAR but impose sign restrictions

on the Path shock that comply with the empirical evidence in Miranda-Agrippino and

Ricco (2021).

� Despite this change, the impulse responses to the Target shock are virtually identical

to the baseline: short term rates rise, output and inflation fall, and monetary/financial

aggregates contract.

� Figure B10 shows impulse responses under the benchmark sign restrictions, where we

allow Target and Path factors to load on each other. The new set of sign restrictions is

given in Table B4. Note that the shocks (columns of ft) remain uncorrelated, as these

are structural.

Take away: the behaviour of the Target shock is orthogonal to the specific sign pattern

chosen for the Path shock.

Data definition changes for core macro variables Figure B2–B5 replace one baseline

series at a time in the small VAR. The full set of changes is summarised in the following table:

Table B1: Variable replacements used in robustness exercises

Figure Variable replaced Robustness series
Figure B2 Real activity Brave–Butters–Kelly GDP nowcast
Figure B3 Real activity Industrial production (IP)
Figure B4 Inflation Core CPI
Figure B5 Policy rate Effective federal funds rate

Across all four swaps, the qualitative and quantitative responses of key output and price

series to the Target shock barely move.

Take away: results are not an artefact of a particular GDP, inflation or policy rate proxy.

Model structure tweaks in the small VAR
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� Figure B6 keeps only the Target and Path shocks; Figure B7 adds demand and supply

shocks whose sign patterns are given in Table B3.

� Figure B8 imposes Φym = 0 (surprises affect macro variables only contemporaneously);

Figure B9 sets Φmm = Φmy = Φym = 0, fully decoupling the surprise block from the

macro block in lags.

In every case the Target shock IRFs remain well-behaved, with only minuscule variations

in magnitude.

Take away: neither the number of other structural shocks nor the degree of feedback

allowed between surprises and macro series undermines identification.

External instrument and lag length robustness

� Figure B11 re-estimates the VAR with the high-frequency surprises of Jarociński and

Karadi (2020). The second shock becomes a central bank information shock (sign

patterns in Table B5). The Target shock IRFs remain virtually unchanged.

� Figure B12 repeats the baseline with p = 12 monthly lags. Dynamics are less smoother

but the peak effects, timing and credible sets overlap those in the six lag benchmark.

Take away: results are insensitive to the specific high-frequency surprise measure and to

doubling the lag length.

Overall message

Every perturbation implemented, whether in identification,

measurement, lag structure or model size, leaves the qualitative

transmission of the Target monetary policy shock intact. Output and

prices fall, policy and short-term rates rise, money and equity prices contract,

and these patterns are reasonably stable in magnitude and timing.
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Figure B1: This is the small VAR with two instruments and seven core macro variables and
sign restrictions of subsection 4.1, but with a different set of sign restrictions on the Path
shock. These restrictions comply with the empirical results of Miranda-Agrippino and Ricco
(2021) and are given in Table B2
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Identified shocks

Endogenous vars Target shock Path shock

Target

Path

−−−−−

realGDP

PCEinf

FFR

GS1

GS10

M2REAL

SP500

+

0

−−−−−

−

−

+

+

0

−

−

0

+

−−−−−

−1

−1

0

NA

+

NA

NA

Table B2: Sign restrictions imposed to core macro variables, which correspond to sing
restrictions to the matrix Λ. Matrix Λ here is constant, not time-varying.
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Figure B2: This is the small VAR with two instruments and seven core macro variables and
sign restrictions of subsection 4.1 but with real GDP replaced with the monthly BBKMGDP
index.
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Figure B3: This is the small VAR with two instruments and seven core macro variables and
sign restrictions of subsection 4.1 but with real GDP replaced with total industrial production
(IPFINAL).
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Figure B4: This is the small VAR with two instruments and seven core macro variables and
sign restrictions of subsection 4.1 but with PCE inflation replaced with core CPI (CPILFESL)
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Figure B5: This is the small VAR with two instruments and seven core macro variables and
sign restrictions of subsection 4.1 but with the shadow rate replaced by the effective Fed funds
rate (FEDFUNDS)
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Figure B6: This is the small VAR with two instruments and seven core macro variables and
sign restrictions of subsection 4.1 but with only two shocks estimated (Target and Path)
without any additional residual shocks.
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Figure B7: This is the small VAR with two instruments and seven core macro variables and
sign restrictions of subsection 4.1 with the Target and Path shocks augmented with a demand
and supply shocks. The full set of sign restrictions used to identify all four shocks is given in
Table B3.
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Identified shocks

Endogenous vars Target shock Path shock Demand shock Supply shock

Target

Path

−−−−−

realGDP

PCEinf

FFR

GS1

GS10

M2REAL

SP500

+

0

−−−−−

−

−

+

+

0

−

−

0

+

−−−−−

−1

−1

0

NA

+

NA

NA

0

0

−−−−−

1

1

1

1

NA

NA

1

0

0

−−−−−

−1

1

NA

NA

NA

NA

−1

Table B3: Sign restrictions imposed to core macro variables, which correspond to sing
restrictions to the matrix Λ. This scheme identifies two monetary shocks and supply and
demand shocks using sign restrictions.
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Figure B8: This is the small VAR with two instruments and seven core macro variables and
sign restrictions of subsection 4.1 with the additional parametric restriction that Φym = 0.
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Figure B9: This is the small VAR with two instruments and seven core macro variables and
sign restrictions of subsection 4.1 with the additional parametric restriction that Φmm =
Φmy = Φym = 0.
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Figure B10: This is the small VAR with two instruments and seven core macro variables and
sign restrictions of subsection 4.1 but allowing the target factor to load on the path shock and
vice versa for the path factor. This scheme is shown in Table B4.
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Identified shocks Residual shocks

Endogenous vars Target shock Path shock Residual shock 1 Residual shock 2

Target

Path

−−−−−

realGDP

PCEinf

FFR

GS1

GS10

M2REAL

SP500

+

NA

−−−−−

−

−

+

+

0

−

−

NA

+

−−−−−

NA

0

0

NA

+

NA

NA

0

0

−−−−−

NA

NA

NA

NA

NA

NA

NA

0

0

−−−−−

NA

NA

NA

NA

NA

NA

NA

Table B4: Sign restrictions imposed to core macro variables, which correspond to sign
restrictions to the matrix Λ. Matrix Λ here is constant, not time-varying.
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Figure B11: This is the small VAR with two instruments and seven core macro variables
and sign restrictions of subsection 4.1, but estimated using the surprise series in Jarociński
and Karadi (2020). Now the second shock is interpreted as a “central bank information”
shock, and I impose sign restrictions that are consistend with the findings of these authors;
see Table B5.
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Identified shocks Residual shocks

Endogenous vars MP shock CB info shock Residual shock 1 Residual shock 2

MP1

TFUT10

SP500

−−−−−

realGDP

PCEinf

FFR

GS1

GS10

M2REAL

SP500

+

+

−

−−−−−

−

−

+

+

0

−

−

0

+

+

−−−−−

+

0

0

+

+

NA

+

0

0

0

−−−−−

NA

NA

NA

NA

NA

NA

NA

0

0

0

−−−−−

NA

NA

NA

NA

NA

NA

NA

Table B5: Sign restrictions imposed to core macro variables, which correspond to sign
restrictions to the matrix Λ. Matrix Λ here is constant, not time-varying.
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Figure B12: This is the small VAR with two instruments and seven core macro variables and
sign restrictions of subsection 4.1, but estimated with p = 12 lags.
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B.2 Estimation of the large VAR with p=6 lags

Figure B13: Responses of core macro variables to Target and Path shocks in the large VAR.
Λ is constant for these variables, therefore, IRFs are fixed over the sample.
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Figure B14: Responses of all other macro variables to Target shock in the large VAR. Λ is
time-varying for these variables, therefore, plot gives responses at time T .

Figure B15: Responses of all other macro variables to Path shock in the large VAR. Λ is
time-varying for these variables, therefore, plot gives responses at time T .

31



Figure B16: Impact responses of disaggregated CPI variables to Target and Path shocks.

Figure B17: Responses over time and over horizons of disaggregated CPI variables to a Target
shock.

32



References

Bhattacharya, A., Chakraborty, A., and Mallick, B. K. (2016). Fast sampling with Gaussian

scale mixture priors in high-dimensional regression. Biometrika, 103(4):985–991.

Botev, Z. I. (2017). The normal law under linear restrictions: Simulation and estimation via

minimax tilting. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

79(1):125–148.

Carvalho, C. M., Polson, N. G., and Scott, J. G. (2010). The horseshoe estimator for sparse

signals. Biometrika, 97(2):465–480.

Geweke, J. F. (1996). Bayesian inference for linear models subject to linear inequality

constraints. In Lee, J. C., Johnson, W. O., and Zellner, A., editors, Modelling and Prediction

Honoring Seymour Geisser, pages 248–263, New York, NY. Springer New York.
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