Introduction to Linear Regression

Sulemana Abdul-Karim

UofG

November 19, 2025

Outline

ILO

Linear regression

Statistical Aspects of Regression

Regression Diagnostics

ILO

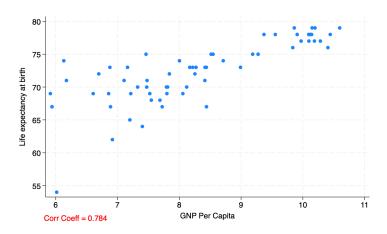
- Explain the purpose of linear regression
- ► Interpret regression coefficients
- Conduct and interpret hypothesis tests
- ▶ Evaluate the key assumptions and perform diagnostic tests

ILO

Intro

- ► Correlation measures strength and direction of a linear relationship between two variables.
 - Study hours Students grades
 - Class attendance grades
 - Parental education Student achievement
 - Screen time Academic performance
 - Civic education Political tolerance
- Correlation is bounded and symmetric.
 - $-1 \le r \le 1$ and X with Y = Y with X

Intro



► Can correlation predict one variable from the other?

Outline

ILO

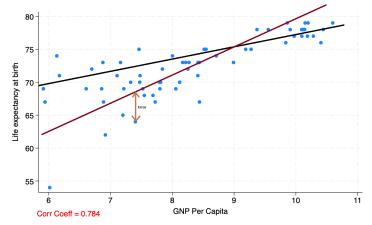
Linear regression

Statistical Aspects of Regression

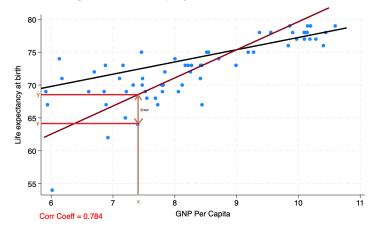
Regression Diagnostics

Linear regression 6

- ► We know that the correlation coefficient is a measure of how well the points will fit a straight line.
 - But which straight line is best?



- A straight line helps. Why?
 - A straight line is best described by $y = \alpha + \beta x$
 - We can therefore predict using only two parameters; α and β .
- ▶ Summarizing the relationship by a line causes errors.



- For each x_i , we have $y_i = \hat{y_i} + e_i$ or $y_i = \alpha + \hat{\beta}x_i + e_i$
- ▶ The errors is therefore defined as $e_i = y_i (\alpha + \hat{\beta}x_i)$
 - By saying line fitting, we actually trying to find a line that causes least errors.
 - How do we define the error?
- ► A first idea would be the sum of all the errors corresponding to all the points:

$$C_0 = \sum_{i=1}^n e_i,$$

However, we dislike positive errors as negative errors, but in the above definition positive and negative errors will cancel with each other.

► These next two are commonly used measures for the error in the full sample

$$C_1(\alpha, \beta) = \sum_{i=1}^n |e_i|, \qquad C_2(\alpha, \beta) = \sum_{i=1}^n e_i^2.$$

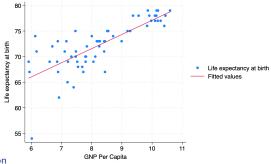
- $ightharpoonup C_2(\alpha, \beta)$, the **least squares (LS) criterion** that measures the sum of squared errors, is by far the most frequently used. Also called **ordinary least squares (OLS)**.
- ▶ $C_1(\alpha, \beta)$ is called the **least absolute criterion**, which we will not be talking about.
- ► The solution to least squares yields

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{\mathsf{Cov}(x, y)}{\mathsf{Var}(x)}, \qquad \hat{\alpha} = \bar{y} - \hat{\beta}\bar{x}$$

▶ Note: If we standardize both variables, the regression line passes Linear through the origin, and the slope is the Pearson correlation coefficient.

	Source	ss	df	MS	Number of obs	=	63
	Model	873.264865	1	873.264865	R-squared Adj R-squared	=	97.09 0.0000
	Residual	548.671643	61	8.99461709		=	0.6141 0.6078
	Total	1421.93651	62	22.9344598		=	2.9991

lexp	Coefficient Std. err.	t	P> t	[95% conf.	interval]
llg _cons	2.768349 Slope .2809566 49.41502 2.348494		0.000 0.000	2.206542 44.71892	3.330157 54.11113



Multiple Regression

- ► Same line-fitting intuition holds when we include several variables.
- ▶ A multiple regression model with k explanatory variables or predictors is given as

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + e$$

- ▶ We are fitting a linear model it is useful to check that scatterplots of *Y* against each predictor are approximately linear.
- ▶ Similarly least squares is used to estimate $\alpha, \beta_1, \beta_2,, \beta_k$
- Example: Returns to Education

wage =
$$\alpha + \beta_1$$
education + β_2 experience + β_3 age + β_4 sex + e

- ▶ Similar interpretation for each β_i
 - Caution partial derivative means holding other variables constant.
 - be mindful about dummy variables too.

Linear regression 12

OLS Assumptions and Properties

- 1. Linearity: Model is linear in parameters
- 2. Data are independently and identically distributed (i.i.d.).
- No Perfect Multicollinearity: Regressors are not exact linear combinations of each other.
- 4. Zero Conditional Mean:

$$E(u_i \mid X_1, X_2, \dots, X_k) = 0$$

5. Homoskedasticity:

$$\mathsf{Var}(u_i \mid X_1, X_2, \dots, X_k) = \sigma^2$$

- Implications:
 - Under assumptions (1)-(4), OLS is **unbiased and consistent**:

$$E[\hat{\beta}_j] = \beta_j$$

- Under all (1)–(5), OLS is **BLUE** (Best Linear Unbiased Estimator): Minimum variance among all linear unbiased estimators (Gauss–Markov Theorem).
- ▶ If normality of errors $(u_i \sim N(0, \sigma^2))$ also holds \rightarrow then the OLS estimators are normally distributed even in small samples (t and F tests are exactly valid).

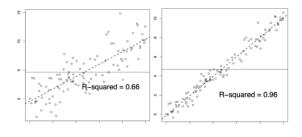
Goodness of Fit: R^2

- How well does the model explain or fit the observed data?
- $ightharpoonup R^2$ (the **coefficient of determination**) measures how well the regression line explains the variation in the dependent variable.

$$R^2 = 1 - \frac{\rm SSR}{\rm SST}$$

where:

- SSR = Sum of Squared Residuals = $\sum (Y_i \hat{Y}_i)^2$
- SST = Total Sum of Squares = $\sum (Y_i \bar{Y})^2$
- ► Interpretation:
 - $-\ R^2$ measures the **proportion of total variation** in Y explained by the model.
 - $0 \le R^2 \le 1$ higher values indicate better fit.
- ► Limitation:
 - $-\ R^2$ always increases when more variables are added, even if they are irrelevant.



Linear regression 15

Adjusted R^2

➤ Adjusted R² corrects the R² for the number of predictors in the model.

$$\bar{R}^2 = 1 - \frac{(1 - R^2)(n - 1)}{n - k}$$

where:

- $-n = \mathsf{sample} \; \mathsf{size}$
- -k = number of explanatory variables
- ► Interpretation:
 - Penalizes the inclusion of unnecessary variables.
 - Can decrease if added variables do not improve model fit.
- ► Comparison:
 - Use ${\cal R}^2$ to describe fit; use $\bar{\cal R}^2$ to compare models with different numbers of predictors.
- ► Note:
 - \bar{R}^2 can be negative (when model fits worse than using the mean of Y).

Outline

ILO

Linear regression

Statistical Aspects of Regression

Regression Diagnostics

Hypothesis Testing

- Hypothesis testing procedures compare a conjecture about a population parameter to the information contained in a sample.
- ▶ In every hypothesis test, five ingredients must be present:
 - A null hypothesis H_0
 - An alternative hypothesis H_1
 - A test statistic
 - A rejection region (or p-value)
 - A conclusion
- ▶ Using the sampling distributions of $\hat{\alpha}$, $\hat{\beta}$, and S^2 , we can develop tests for hypotheses regarding the unknown population parameters α , β , and σ^2 .

Null and Alternative Hypotheses

- ▶ The null hypothesis, H_0 , specifies a value for a regression parameter.
- ightharpoonup Consider the case of β .
- ► Typically, the null hypothesis is stated as:

$$H_0: \beta = \beta_0,$$

where β_0 is a hypothesized value.

- Every H_0 is paired with a logical alternative hypothesis H_1 .
- ► Three possible alternatives:
 - Left-tailed: $H_1: \beta < \beta_0$ - Right-tailed: $H_1: \beta > \beta_0$
 - Two-tailed: $H_1: \beta \neq \beta_0$
- ightharpoonup The choice of H_1 depends on the research question and theory.

Hypothesis Testing in Regression

- After estimating the model, we often test whether each explanatory variable has a significant effect on *Y*.
- For a single coefficient β_j :

$$H_0: \beta_j = 0$$
 vs. $H_1: \beta_j \neq 0$

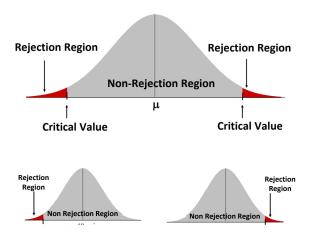
► Test statistic (t-test):

$$t = \frac{\hat{\beta}_j - 0}{SE(\hat{\beta}_j)}$$

- Decision rule:
 - If $|t| > t_{\alpha/2, df}$, reject H_0 .
- ▶ Equivalently, we could use the p-value the probability of observing a test statistic as extreme as the one computed, assuming H_0 is true.
 - A small p-value (< 0.05) \rightarrow strong evidence against H_0 .
 - A large p-value (> 0.10) \rightarrow weak evidence; fail to reject H_0 .
- Common significance levels:

$$\alpha = 0.10, 0.05, 0.01$$

- If we reject H_0 , the variable has a statistically significant effect on Y.



Joint Significance Testing (F-test)

► Tests whether a group of coefficients are jointly equal to zero.

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_k = 0$$
 vs. $H_1: At least one $\beta_i \neq 0$$

► Test statistic:

$$F = \frac{(R_U^2 - R_R^2)/q}{(1 - R_U^2)/(n - k)} \sim F(q, n - k)$$

where:

- R_U^2 : from the unrestricted model
- R_R^2 : from the restricted model (imposing H_0)
- q: number of restrictions
- Decision rule:
 - If $F > F_{\alpha,q,n-k}$ or p-value $< \alpha$, reject H_0 .
- Interpretation:
 - The model (or set of regressors) is jointly significant in explaining Y.

Outline

ILO

Linear regression

Statistical Aspects of Regression

Regression Diagnostics

Linearity

▶ The true model is:

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

- ► The model is correctly specified.
- ▶ Linearity refers to the way the parameters (β_0, β_1) and the error term u enter the equation — not necessarily to the relationship between Y and X themselves.
- Other examples of linearity:

$$-Y_i = \beta_0 + \beta_1 \ln(X_i) + u_i$$

$$-\ln(Y_i) = \beta_0 + \beta_1/X_i + u_i$$

Examples of non-linearity:

$$-Y_i = \beta_0 + \exp(\beta_1 X_i) + u_i$$

$$- Y_i = \beta_0 + 1/(1 + \exp(\beta_1 X_i)) + u_i$$

Model	Interpretation of \widehat{eta}_1			
Level-level	An increase in X by 1 unit is associated			
$Y_i = \beta_0 + \beta_1 X_i + u_i$	with a change in Y by \widehat{eta}_1 units on average			
Log-level	An increase in X by 1 unit is associated with			
$ln(Y_i) = \beta_0 + \beta_1 X_i + u_i$	a change in Y by $(100 imes \widehat{eta}_1)\%$ on average			
Level-log	An increase in X by 1% is associated with a			
$Y_i = \beta_0 + \beta_1 \ln(X_i) + u_i$	change in Y by $(\widehat{eta}_1/100)$ units on average			
nostics $\frac{\text{Log-log}}{\ln(Y_1) = \beta_0 + \beta_1 \ln(X_1) + \mu_1}$	An increase in X by 1% is associated			
$ln(Y_1) = \beta_0 + \beta_1 ln(X_1) + \mu_1$	with a change in Y by B, % on average			

Multicollinearity

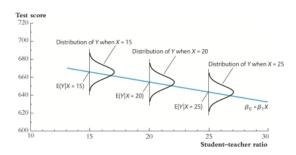
- Multicollinearity occurs when two or more highly correlated variables does have an "effect" on the response variable, but in the regression output some or all of them show insignificance.
- ► Caution If you do not see any insignificance in the regression, you don't have to worry about multicollinearity problem.
- Whether a group of regressors have an effect can be tested using the F test
- Detection
 - High pairwise correlations among regressors.
- Remedies, should be guided by practical background or meaning of these variables
 - Drop one of the correlated variables.
 - Combine them (e.g., create an index or ratio).
 - Collect more data to reduce sampling variation.

Heteroskedasticity

Heteroskedasticity occurs when the variance of the error term is not constant across observations.

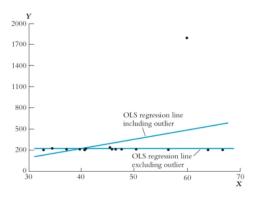
$$Var(e_i \mid X_i) = \sigma_i^2 \neq \sigma^2$$

- Consequences
 - OLS estimates remain unbiased and consistent.
 - But standard errors are biased \Rightarrow invalid t and F tests.
 - Confidence intervals and p-values become incorrect.
- Detection
 - Plot residuals \hat{e}_i vs. fitted values \hat{Y}_i
 - Formal tests:
 - Breusch-Pagan test
 - White test
- Remedies
 - Use robust standard errors(White's correction).
 - Transform the model (e.g., use logs).



Outliers

- Outliers are observations with unusually large or small values relative to the rest of the data.
- They may arise from data entry errors, unusual events, or genuine extreme cases.
- Why Outliers Matter
 - Can distort regression estimates and predicted values.
 - May pull the regression line toward them, affecting slope and intercept.
 - Often inflate residual variance, reducing precision.
- Detection
 - Inspect scatterplots or boxplots.
 - Examine residuals / standardized residuals.
- Remedies
 - Verify data accuracy and correct errors.
 - Consider robust regression or transforming variables (e.g., log scale).
 - Remove outlier only if justified (document reasoning).



Omitted/Redundant Variables

- Omitted variable bias occurs when a relevant explanatory variable is left out of the regression model.
- Consequence
 - The estimated coefficients become biased and inconsistent.
 - The direction of bias depends on the correlation between the omitted and included variables.
- ► Illustration

True model:
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$$

Estimated model: $Y = \beta_0 + \tilde{\beta}_1 X_1 + e$

Then,

$$E[\tilde{\beta}_1] = \beta_1 + \beta_2 \frac{\mathsf{Cov}(X_1, X_2)}{\mathsf{Var}(X_1)}$$

 \Rightarrow If X_1 and X_2 are correlated, $\tilde{\beta}_1$ is biased.

- Remedies
 - Include all relevant variables that affect Y.
 - Start with the largest possible model, and then use significance test and/or F test to remove some variables, if any.

Dummy Variables in Regression

Definition:

- Dummy variables represent categorical information numerically.
- They take values:

$$D_i = \begin{cases} 1, & \text{if category is present} \\ 0, & \text{otherwise} \end{cases}$$

Interpretation:

 The coefficient on a dummy variable measures the difference in the intercept between groups.

$$Y_i = \beta_0 + \beta_1 D_i + u_i$$

If
$$D_i = 1$$
: $E(Y|D_i = 1) = \beta_0 + \beta_1$; If $D_i = 0$: $E(Y|D_i = 0) = \beta_0$

- Multiple Categories:
 - For m groups, use m-1 dummies to avoid the **dummy variable** trap (perfect multicollinearity).
- Interactions:
 - Combine dummies with other variables to test different slopes:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times D_i) + u_i$$

Allows slope and intercept to differ across groups.

Dummy Variable

Consider the wage equation:

$$\mathsf{wage}_i = \beta_0 + \beta_1 \mathsf{educ}_i + \beta_2 \mathsf{female}_i + \beta_3 (\mathsf{educ}_i \times \mathsf{female}_i) + u_i$$

where:

- educ $_i$ = years of education
- female $_i = 1$ if female, 0 if male
- Interaction term allows education to affect wages differently by sex

Expected values:

$$\begin{split} E(\mathsf{wage}|\mathsf{male}) &= \beta_0 + \beta_1 \mathsf{educ} \\ E(\mathsf{wage}|\mathsf{female}) &= (\beta_0 + \beta_2) + (\beta_1 + \beta_3) \mathsf{educ} \end{split}$$

Interpretation Example:

- If $\beta_2 < 0$: females earn less than males at zero education (intercept gap).
- If $\beta_3 < 0$: females have a smaller return to each additional year of education.
- If $\beta_3 > 0$: education reduces the gender wage gap.