

Ischaemic stroke – Time is brain

Ischaemic Core:

irreversibly damaged and cells are destined to die.

Ischaemic Penumbra:

tissue does not function normally but is <u>still viable</u> and may recover if blood flow is restored or drugs given to support survival

Nature Reviews | Neuroscience

from Rothwell et al.

Acute evolution of brain damage following stroke

Permanent MCAO

Acute evolution of brain damage following stroke – gender differences

Permanent MCAO

Acute evolution of brain damage following stroke – influence of hypertension

Early reperfusion at 60 min can salvage brain tissue...

Transient MCAO

...but not in the SHRSP?

Stroke co-morbidities such as age, hypertension, atherosclerosis, obesity & diabetes all have a strong inflammatory component

Systemic inflammation impairs reperfusion

- Inflammation associated with increased risk of stroke and worse outcome following stroke
- Systemic inflammation induced with IL-1 resulted in hypoperfusion following reperfusion and increased infarct volume
- Hypoperfusion was due in part to an upregulation of the vasoconstrictor ET-1

Recanalisation in the presence of stroke co-morbidities (i.e hypertension, age, atherosclerosis) may result in impaired perfusion partly through effects of inflammation on the cerebrovasculature

Angiotensin(1-7) as a target for protection following stroke? – potential anti-inflammatory role?

Neuropharmacology 71 (2013) 154-163

Contents lists available at SciVerse ScienceDirect

Neuropharmacology

journal homepage: www.elsevier.com/locate/neuropharm

Anti-inflammatory effects of angiotensin-(1-7) in ischemic stroke

Robert W. Regenhardt ^{a,b}, Fiona Desland ^{a,b}, Adam P. Mecca ^{a,b}, David J. Pioquinto ^{a,b}, Aqeela Afzal ^c, J. Mocco ^c, Colin Sumners ^{a,b,*}

Brain ischemia induces neuroinflammation, apoptosis, and oxidative stress and causes brain damage.

JP British Journal o Pharmacology

RESEARCH PAPER

Suppressing inflammation by inhibiting the NF-kB pathway contributes to the neuroprotective effect of angiotensin-(1-7) in rats with permanent cerebral ischaemia

Teng Jiang¹, Li Gao², Jun Guo³, Jie Lu², Yao Wang² and Yingdong Zhang¹

DOI:10.1111/J.1476-5381.2012.02105 www.brjpharmacol.o

Correcpondence

Dr Yingdong Zhang, Department of Neurology, Nanjing First Hospital, Nanjing Medical University, PO Box 210006, No. 68 Changle Road, Nanjing 210006, China. E-mail: jt870918@163.com; zhangyingdong@yahoo.com.cn

Keywords

stroke; inflammation; Ang-(1-7); A-779; NF-xB

Received 4 March 2012 Revised 2 July 2012 Accepted

8 July 2012

- •Ang(1-7) attenuated the increased expression of iNOS, IL-1a, IL-6, CXCR4 & CD11b 24hr post ET-1 MCAO.
- ↓ NF-κB
- Mas Receptor immunoreactivity present in neurons in rat cerebral cortex and striatum as well as macrophages/ microglia.

Ricardo A. Peña-Silva, and Donald D. Heistad Hypertension. 2015;66:15-16

Does Angiotensin-(1-7) improve outcome following reperfusion?

Ang-(1-7) increases tissue salvage following reperfusion

- Temporal changes in Cerebral blood flow laser doppler/speckle imaging
- Methods of detecting and measuring inflammatory mediators post stroke? Blood samples, brain tissue..
- BBB breakdown, Haemorrhagic transformation

Ongoing & Future studies

- Investigating the role of Ang(1-7) on the acute evolution of brain damage in the presence of stroke co-morbidities (Mariana Arroja, PhD student & Dr Emma Reid)
- Potential of inhaled NO as a therapeutic strategy to improve CBF following stroke (Joachim Biose, PhD student)
- Understanding the role of Alpha 5 Beta1 Integrin on BBB integrity and outcome following stroke (Biav Kittani, PhD student)

Acknowledgements

- Dr Emma Reid
- Ms Mariana Arroja, PhD student
- Prof Mhairi Macrae
- Mrs Lindsay Gallagher
- Dr Tracey Baskerville
- Dr Debbie Dewar
- Dr Ku Mastura Ku Mohd Noor, PhD student
- Dr William Holmes
- Mr Jim Mullin
- Dr Lorraine Work

The Henry Smith Charity

founded in 1628