

[SOLUTIONS] 4. Validating/Debugging Code

Parson Puzzles [Solutions]

1. Read in a number and write out whether it is odd or even
5​ ​num = input("Enter a number: ")
3​ ​mod = num % 2
6​ ​if mod > 0:

1​ ​print("You picked an odd number.")
4​ ​else:

2​ ​print("You picked an even number.")

2.Guessing game 1 to 9

3 ​import random
1 ​rd = random.randint(1,9)
13 ​guess = int(input("Enter a guess between 1 to 9"))
4 ​c = 1
2 ​while guess != rd and guess != "exit":

6 ​if guess == rd:
8 ​print("Right!")
9 ​print("You took only", c, "tries!")

7 ​else:
11 ​if guess > rd:

10 ​print("Too high"
7 ​else:

12 ​print("Too low")
13 ​guess = int(input("Enter a guess between 1 to 9"))
5 ​c += 1

3. Read a file and print out the length of line with a space between each length.
4 ​f = open(‘filename.txt’, ‘r’)
1 ​lines = f.readlines()
3 ​for line in lines:

5 ​length = len(line)
2 ​print(length, end = " ")

6 ​f.close()

4. Given a list of words, both write the words backwards and order the words in the
reverse direction
2 ​words = ["once","upon","a","time","in","oppositeland"]
3 ​neworder = []
8 ​for word in words:

6 ​new_word = ""
5 ​for letter in word:

7 ​new_word = letter + new_word

1

[SOLUTIONS] 4. Validating/Debugging Code

1 ​neworder = [new_word] + neworder
4 ​print(neworder)

5. Given a dictionary named ​​heights​​ with string names as keys and heights (in
meters) as values, print tallest.
3 ​max = 0
7 ​tallest = 'No-one'
1 ​for person in heights:

6 ​height = heights[person]
5 ​if height > max:

8 ​max = height
4 ​tallest = person

2 ​print('the tallest person is ', tallest)

6. Given a file named ​​data.csv​​ with names as strings and scores as numbers in the
range 0 to 100 inclusive, print lowest
2 ​file = open('data.csv')
4 ​name = 'No-one'
5 ​min = 100
10 ​for line in file:

9 ​score = int((line.split(' ,'))[1])
1 ​if score < min:

11 ​min = score
3 ​name = (line.split(','))[0]
8 ​minName = name

6 ​print('person with min score is' + minName)
7 ​file.close()

7. ​​Write a program to read the data into a list of dictionaries, each dictionary holding a
name and an age for a single person.
5 ​f = open("data.txt")
3 ​lines = f.readlines()
8 ​people = []
7 ​for lineNum in range(0, len(lines), 3):

9 ​newName = lines[lineNum][:-1]
6 ​newAgeAsString = lines[lineNum + 1][:-1]
1 ​newAge = int(newAgeAsString)
2 ​newPerson = { "name" : newName, "age" : newAge }
4 ​people = people + [newPerson]

8. Parson's Problem Generator: Write a program which takes another program in a
text file, shuffles the line order, trims the leading whitespace and adds a line number
to each reordered line.
11 ​from random import shuffle
1 ​f = open("program.txt")
10 ​lines = f.readlines()

2

[SOLUTIONS] 4. Validating/Debugging Code

8 ​shuffle(lines)
4 ​current_line = 1
2 ​for line in lines:
 ​9 ​while line[0] == " ":
 ​6 ​line = line[1:]
 ​5 ​line = str(current_line) + ". " + line[:-1]
 ​7 ​current_line += 1
 ​3 ​print(line)

9. Caesar Shift Cipher: Write a program that replaces each letter in a string with the
next in the ​​alphabet, ignoring whitespace
4 ​import string
8 ​alphabets=list(string.ascii_lowercase)
9 ​plaintext = "duel by dawn"
11 ​withoutblank = ""
12 ​for letter in plaintext:

2 ​if letter != " ":
1 ​withoutblank += letter

10 ​decoded = ""
7 ​for letter in withoutblank:

5 ​i = alphabets.index(letter)
3 ​decoded += alphabets[(i + 1)% len(alphabets)]

6 ​print(decoded)

10. (Challenge) Matrix multiplication: Given two 2D lists (forming matrices), compute
the matrix multiplication

5 ​def matrixmultiplication (A, B):
11 ​Arows = len(A)
13 ​Acols = len(A[0])
15 ​Brows = len(B)
2 ​Bcols = len(B[0])
3 ​if Acols != Brows:

7 ​print("Not applicable")
16 ​return

3

[SOLUTIONS] 4. Validating/Debugging Code

10 ​C = []
6 ​for row in range(0,Bcols):

8 ​newrow = []
1 ​for col in range(0,Arows):

19 ​newrow += [0]
17 ​C += [newrow]

9 ​for i in range(Arows):
18 ​for j in range(Bcols):

4 ​for k in range(Acols):
14 ​C[i][j] += A[i][k] * B[k][j]

12 ​return C

A = [[1,2],[3,4]]

B = [[2,0],[1,2]]

print(matrixmultiplication(A,B))

4

