

[SOLUTIONS] 5. Problem Solving from Scratch

Problem solving from scratch
[SOLUTIONS]
NB: there are likely to be many ways of solving these problems. Below are some
suggested solutions, but may not be the only - or even best - ways to get the right
functionality.

1. Variables, basic control flow, simple types, textual I/O,
extending to related functions
1. State Change

temp = int(input("Enter the current temperature: "))

state = "liquid"

if temp <= 0:

 state = "solid"

elif temp >= 100:

 state = "gas"

print("At " + str(temp) + " degrees centigrade, " +

 "water will be a " + state + ".")

2. Average Sleep Calculator

total = 0

days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday",

 "Saturday", "Sunday"]

for i in range(0, 7):

 hours = input("Hours of sleep on night "+days[i]+": ")

 total += int(hours)

print(total/7)

3. Age Checker (Integer in Range Checker)
def getInRange(type, min, max):

 user_in = int(input("Input "+type+": "))

 while user_in < min or user_in > max:

 user_in = int(input("Invalid entry. Input "+type+": "))

 return user_in

1

[SOLUTIONS] 5. Problem Solving from Scratch

4. Concussion check calculator
def getInRange(type, min, max):

 user_in = int(input("Input "+type+": "))

 while user_in < min or user_in > max:

 user_in = int(input("Invalid entry. Input "+type+": "))

 return user_in

print("Rate symptoms from 0 not at all to 10 being the most severe")

vom = getInRange("how stringly they feel they are going to be sick", 0,

10)

bal = getInRange("how bad their sense of balance is", 0, 10)

drows = getInRange("how drowsy they feel", 0, 10)

mem = getInRange("how bad their memory of recent events is", 0, 10)

v_weight = 3

b_weight = 2

d_weight = 1

m_weight = 4

concussed = v_weight * vom + b_weight * bal + d_weight * drows + m_weight

* mem

print()

print("They have a " + str(concussed) + "% chance of being concussed")

5. Ordinal Numbers

endings = ["th", "st", "nd", "rd"]

for i in range(1,32):

 if (i > 10 and i < 14) or i % 10 > 3:

 ind = 0

 else:

 ind = i % 10

 print(str(i) + endings[ind])

Now, write a function that takes a number between 1 and 31 and returns the abbreviated
ordinal number for that number, e.g. 1 gives 1st, 2 gives 2nd, 3 gives 3rd, and so on.

endings = ["th", "st", "nd", "rd"]

def getAbbreviatedOrdinal(i):

 if (i > 10 and i < 14) or i % 10 > 3:

 ind = 0

 else:

 ind = i % 10

2

[SOLUTIONS] 5. Problem Solving from Scratch

 return str(i) + endings[ind]

6. Find Max without max()

def max(a,b,c):

 if (a > b) and (a > c):

 return a

 elif (b > a) and (b > c):

 return b

 elif (c > a) and (c > b)

 return c

#or...

def max(a,b,c):

 if a > b:

 if a > c:

 return a

 else:

 return c

 elif b > c:

 return b

 else:

 return c

7. Guessing Game

import random

number = random.randint(1,100)

guess = 0

while guess != number:

guess = input("Please enter your guess.")

guess = int(guess)

if guess < number:

 print("Too low!")

elif guess > number:

 print("Too high!")

else:

 print("You got it!")

8. Sum of List of Integers

def addem (numbers):

total = 0

3

[SOLUTIONS] 5. Problem Solving from Scratch

for n in numbers:

 total += n

return total

2. Adding in strings
9. Anagram Maker/Scrambler

import random

word = input("Enter word for anagram:")

anagram = ""

for i in range(len(word)):

 newLetterPos = random.randint(0, len(word) - 1)

 anagram = anagram + word[newLetterPos]

 word = word[:newLetterPos] + word[newLetterPos + 1:]

print(anagram)

10. String Reversal

inputString = input("Please enter string:")

newString = ''

index = len(inputString)

while index > 0:

 index -= 1

 newString += inputString[index]

print(newString)

11. Tabletop Dice Roller
from random import randint

input_string = input("Enter your dice: ")

while input_string != "":

 inputs = input_string.split(" ")

 dice = inputs[0]

 modifier = inputs[1]

 dice_split = dice.split("d")

 dice_count = int(dice_split[0])

 dice_sides = int(dice_split[1])

4

[SOLUTIONS] 5. Problem Solving from Scratch

 total = 0

 for i in range(0, dice_count):

 roll = randint(1, dice_sides)

 total += roll

 if modifier[0] == "+":

 total += int(modifier[1:])

 else:

 total -= int(modifier[1:])

 print(total)

 input_string = input("Enter your dice (leave blank to close): ")

3. Adding in lists (array lists)
12. Increment every Integer in a List

theList = [3, 6, 4, 8, 19, 2, 34, 17]

for i in range(len(theList)):

 theList[i] = theList[i] + 1

13. Playlist Shuffle

from random import shuffle

playlist = ["Ashes by Celine Dion",

 "Welcome to the Party by Diplo",

 "Nobody Speak by DJ Shadow",

 "In Your Eyes by Peter Gabriel",

 "Take on Me by a-ha",

 "If I Could Turn Back Time by Cher",

 "9 to 5 by Dolly Parton",

 "All Out Of Love by Air Supply",

 "Bangarang by Skrillex"]

shuffled = shuffle(playlist)

for line in playlist:

 print(line)

4. Adding in dictionaries as a look-up table
14. Word Counter

wordCounts = {}

line = input()

5

[SOLUTIONS] 5. Problem Solving from Scratch

while line != ".":

 words = line.split(" ")

 for word in words:

 if word in wordCounts:

 wordCounts[word] = wordCounts[word] + 1

 else:

 wordCounts[word] = 1

 line = input()

for word in wordCounts:

 print(word + ": " + str(wordCounts[word]))

15. Square Root Lookup

import math

sqrts = {}

for i in range(1, 100):

 sqrts[i] = math.sqrt(i)

while True:

 square = int(input("Type in the number: "))

 if square > 0 and square <= 100:

 print("The square root is " + str(sqrts[square]))

 else:

 print("The number you have entered is out of range.")

16. Stone, Paper, Scissors Game

import random

weapon = raw_input("Please enter stone, paper or scissors:")

winningWeapon = {

 "paper": "stone",

 "stone": "scissors",

 "scissors": "paper"

}

computerWeapon = random.choice(winningWeapon.keys())

print("Computer picks: " + computerWeapon)

if computerWeapon == weapon:

 print("Draw")

elif winningWeapon[computerWeapon] == weapon:

6

[SOLUTIONS] 5. Problem Solving from Scratch

 print("Computer wins")

elif winningWeapon[weapon] == computerWeapon:

 print("You win")

else:

 print("Error")

5. Adding in dictionaries used as a “record” data type
17. Older than Average

people = []

totalAge = 0

name = input("Name (full-stop to finish): ")

while name != ".":

 age = int(input("Age: "))

 totalAge = totalAge + age

 people = people + [{ "name" : name, "age" : age }]

 name = input("Name (full-stop to finish): ")

averageAge = totalAge / len(people)

for person in people:

 if person["age"] > averageAge:

 print (person["name"])

6. Adding in file I/O
18. People over 21

f = open("namesAges.txt")

lines = f.readlines()

Assumes the name comes first, then the age

for line in lines:

 pieces = line.split(" ")

 if int(pieces[1]) >= 21:

 print(pieces[0])

19. Longest Name/Reversed Names

f = open("names.txt")

lines = f.readlines()

7

[SOLUTIONS] 5. Problem Solving from Scratch

lenLongestName = len(lines[0])

for name in lines[1:]:

 if len(name) > lenLongestName:

 lenLongestName = len(name)

for name in lines:

 if len(name) == lenLongestName:

 print(name)

for nameIndex in range(len(lines) - 1, -1, -1):

 print (lines[nameIndex])

20. Age Lookup

f = open("namesAges.txt")

lines = f.readlines()

people = []

Assumes the name comes first, then the age

for line in lines:

 pieces = line[:-1].split(" ")

 people = people + [{ "name" : pieces[0], "age" : int(

pieces[1]) }]

age = int(input())

while age != 0:

 noNames = True

 for person in people:

 if person["age"] == age:

 print (person["name"])

 noNames = False

 if noNames:

 print ("No names of that age.")

 age = int(input())

21. Lottery Prize Calculator (Number of 3-Number Winners)

file = open('lottery_tickets.txt','r')

8

[SOLUTIONS] 5. Problem Solving from Scratch

winningNumbers = input("Please enter the winning numbers

1,2,3,4,5,6:")

winningList = winningNumbers.split(",")

winningIDs = ""

for line in file.readlines():

id, numbers = line.split(" ")

numbersList = numbers.split(",")

count = 0

for num in numbersList:

if num in winningList:

count += 1

if count == 3:

winningIDs += id + " "

print("The number winning three numbers is:" + str(winningIDs))

22. Pretty Print Tables

def whitespace(string, length):

 while len(string) < length:

 string += " "

 return string

f = open("games.txt")

raw_rows = f.readlines()

rows = []

for row in raw_rows:

 row = row[:-1].split(",")

 rows+=[row]

num_columns = len(rows[0])

column_widths = [0]*num_columns

for i in range(num_columns):

 max_width = 0

 for row in rows:

 if len(row[i]) > max_width:

 max_width = len(row[i])

 column_widths[i] = max_width

h_rule= "+"

for i in range(num_columns):

 h_rule+= "-"*column_widths[i] + "--+"

print(h_rule)

out_row = "| "

9

[SOLUTIONS] 5. Problem Solving from Scratch

for i in range(num_columns):

 out_row += whitespace(rows[0][i], column_widths[i]) + " | "

print(out_row)

print(h_rule)

for row in rows[1:]:

 out_row = "| "

 for i in range(num_columns):

 out_row += whitespace(row[i], column_widths[i]) + " | "

 print(out_row)

print(h_rule)

23. Word Blanker

f = open("input.txt")

text = f.readline()

output_string = ""

words = text.split(" ")

for word in words:

 if len(word) <= 2:

 output_string += word

 else:

 output_string += word[0] + "*"*(len(word)-2) + word[-1]

 output_string += " "

print(output_string)

24. Mail Merge

Read in the data file to a list of dictionaries (records)

- turn first line into a list of field names

- then use this list to create a new dictionary for each

- remaining line

f = open("mergeData.txt")

fieldLine = f.readline()

fields = fieldLine[:-1].split(",")

data = []

linesRemaining = f.readlines()

for line in linesRemaining:

 items = line[:-1].split(",")

 newRecord = {}

 for i in range(len(fields)):

10

[SOLUTIONS] 5. Problem Solving from Scratch

 newRecord[fields[i]] = items[i]

 data = data + [newRecord]

f.close()

Read in the template file as a single string and then loop over

the merge data, creating a new string each time, replaced fields

with real data

f = open("mergeTemplate.txt")

template = f.read()

for thisData in data:

 newMsg = ""

 i = 0

 while i < len(template):

 if template[i] != "<":

 newMsg = newMsg + template[i]

 else:

 i += 1

 fieldName = ""

 while template[i] != ">":

 fieldName += template[i]

 i += 1

 newMsg = newMsg + thisData[fieldName]

 i += 1

 print(newMsg)

25. Bus Timetable
Read in the bus timetable file

Keep a dictionary of the bus stop names, mapping to route position, and

a list of lists for the timings of each service

f = open("busTimetable.txt")

lines = f.readlines()

busStopNames = lines[0][:-1].split(",")

busStopPositionLookup = {}

position = 0

for name in busStopNames:

 busStopPositionLookup[name] = position

 position += 1

services = []

11

[SOLUTIONS] 5. Problem Solving from Scratch

for serviceLine in lines[1:]:

 nextService = serviceLine[:-1].split(",")

 services += [nextService]

Respond to user requests

while True:

 time = input("Type in the time: ")

 stop = input("Type in the bus-stop name: ")

 if stop in busStopPositionLookup:

 stopPosition = busStopPositionLookup[stop]

 nextService = 0

 nextTimeAtStop = services[nextService][stopPosition]

 while time > nextTimeAtStop and nextService < len(services) -

1:

 nextService += 1

 nextTimeAtStop = services[nextService][stopPosition]

 if time <= nextTimeAtStop:

 print("Your next service will arrive at " + nextTimeAtStop)

 else:

 print("There are no more services at your stop today")

 else:

 print("Bus stop not found in route, please try again.")

12

