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MAXIMALLY STABLE MODEL ECOSYSTEMS CAN BE
HIGHLY CONNECTED
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Abstract. Community ecologists have long sought to understand the basis for two
apparently conflicting observations. The first is the evident persistence of complex com-
munities through time. The second is the theoretical result that, in general, complex model
communities are less likely to be stable than simpler ones. Previous attempts to reconcile
these observations have studied the average properties of model communities constructed
under a variety of different assumptions. The problem with such studies is that the set of
all possible models, even when subject to strict constraints, is very large relative to the
subset that may be representative of real communities, and it is unclear which constraints
to apply. Here, it is assumed that real communities are a highly restricted subset of all
possible models, and attention is focused instead on properties of communities constructed
to be as stable as they could be. Geometrically derived analytic results show that in general,
communities constructed in this way require high levels of connectance, as measured by
the product of the strength and frequency of interspecific interaction. In particular, con-
nectance between weakly and strongly self-regulated elements of these communities is of

critical importance.
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INTRODUCTION

When Robert May (1971, 1972, 1974) first “’kicked
open the barn door” (Cohen et al. 1990: 67) on the
relationship between ecological stability and complex-
ity back in the 1970s he exposed a seemingly funda-
mental contradiction between prevailing ecological in-
tuition espoused by MacArthur (1955) and Elton (1958)
and mathematical fact. The ensuing ‘‘stampede of the-
oretical and empirical studies that thundered out’ (Co-
hen et al. 1990: 67) of this particular barn has now
largely subsided; yet, this contradiction—defined by
some of the principal architects of modern ecology—
remains to be convincingly resolved.

May’s (May, 1971, 1972, 1974) formulation is fre-
quently criticized for three broadly different reasons.
First, populations are not generally thought to be at
equilibrium; second, belief persists that even if popu-
lations are found around equilibrium, these models are
unrealistic, omitting details of autecology important to
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understanding population dynamics; and last, stability
is only evaluated with respect to arbitrarily small per-
turbations.

Of these concerns, only the last is necessarily seri-
ous. First, state variables considered to be at equilib-
rium can be measured over any appropriate spatial
scale—and in particular, they do not have to represent
local population densities. For example, results apply
equally if variables under consideration are chosen to
be proportions of available habitat in ecosystems oc-
cupied by species, areas over which guilds or groups
of species range, or spatially averaged mean population
densities—and none of these choices necessarily re-
quire an assumption that populations are at equilibrium
at smaller scales. Second, while ecosystem variables
are likely to have complicated functions governing
their dynamics, May’s methods require only an ap-
proximate estimate of first-order terms of these func-
tions obtained from a linearization around the equilib-
rium; thus, his results do not assume or require detailed
knowledge of them.

As a result, some of May’s randomly generated in-
teraction matrices are likely to describe local interac-
tions at some scale where variables are reasonably sta-
ble about an equilibrium point, and in this respect can-
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not easily and justifiably be criticized as being unre-
alistic. However, the problem remains, as pointed out
by Lawlor (1978), that parameter combinations rep-
resentative of realistic model ecosystems probably con-
stitute only a tiny fraction of full parameter space and
that randomly assembled systems are vanishingly un-
likely to reflect real ecosystems. Many previous studies
reveal that it is unclear what constraints render model
ecosystems more realistic (past examples have included
equilibria that are feasible, stable, possessing realistic
trophic structures, etc). With this difficulty in mind, I
have asked instead what are connectance properties of
model ecosystems that are as stable as mathematically
possible? I conclude that stablest possible systems are
characterized by heightened connectance, but such sys-
tems require strongly self-regulated ecosystem vari-
ables to be connected with those more weakly self-
regulated. Removal of either these strongly self-regu-
lated elements, or their links with other elements of the
ecosystem, will likely result in substantial ecosystem
changes.

ANALYSIS

Proceed in the now-standard way (e.g., May 1974),
by investigating the n eigenvalues of an n X n Jacobian
matrix A (with elements a;), that determine the line-
arized dynamics: dx/dt = Ax, where X is a vector con-
taining small perturbations made to a system of »n un-
defined state variables near an assumed equilibrium.
Use is made of the following three rules governing
location of eigenvalues of any matrix: (1) Every one
of the n eigenvalues of A lies in at least one of the
circles (discs), Cy, ... , C,, defined over the complex
plane, where C; has its center on the real axis at the
diagonal entry a; and its radius is equal to the sum of
absolute values of off-diagonal elements along the rest
of the row. (2) If s of these circular discs form a con-
nected domain that is isolated from other discs, then
there are precisely s eigenvalues within this connected
domain. (These two rules are known as Gerschgorin’s
first and second theorems.) (3) The sum of real parts
of the eigenvalues of A equals the sum of diagonal
elements of A; thus positions of eigenvalues must ‘‘bal-
ance’’ about the center of these discs as measured with
respect to the real axis (proofs and details provided in
Wilkinson [1965]; this approach is further outlined in
Haydon [1994]). For the equilibrium to be stable, the
largest of the real parts of the eigenvalues must be
negative. The more negative this leading eigenvalue is,
the faster the system returns to equilibrium following
(small) perturbations.

Strength and frequency of interspecific interactions
indicated by the magnitude and frequency of non-zero
off-diagonal elements define ecosystem connectance.
The per capita amount of self-regulation of the ith sys-
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tem variable near equilibrium is characterized by the
magnitude of the diagonal (a;) element of the Jacobian
matrix. In view of the central importance of diagonal
elements of A in what follows, it must be appreciated
that, in general, the value of these diagonal elements
will not be simple functions of parameters associated
with the dynamics of purely the ith variable—but may
contain contributions from any interaction in which the
ith variable participates nonlinearly. (Thus, for exam-
ple, concavity in a functional response often contrib-
utes negative quantities to these diagonal elements,
while convex, type II responses often contribute pos-
itive quantities.)

First, following May’s (1971, 1972, 1974) formu-
lation, consider the special case in which all n discs
are identically centered. This amounts to assuming all
ecosystem variables are equally self-regulated. Note
the trivial case in which off-diagonal terms are all zero,
discs are single points on the real axis, and it follows
that the eigenvalues must be the diagonal elements. The
stability of the whole system cannot be more (or less)
than the degree of self-regulation exhibited by each
variable. Now introduce non-zero off-diagonal terms.
The basis for May’s result is immediately made trans-
parent: as discs increase in radius, eigenvalues con-
tained within them may be found at greater distances
from disc centers, but because of rule three, eigenval-
ues more negative than the disc centers must be bal-
anced by more positive eigenvalues. Increasing con-
nectance ‘‘decouples’ eigenvalues from their diagonal
elements and inevitably results in the most positive
eigenvalue becoming more positive (Fig. 1a). Thus,
increasing system connectance cannot permit increased
stability, and the probability of finding stable systems
drops rapidly off with increased connectance. Increas-
ing the numbers of discs (i.e., the number of variables
constituting the ecosystem dynamics) increases the
likelihood that any one eigenvalue will take on a more
positive value (Fig. 1b), and thus decreases stability.

Next consider the more general case in which discs
are not all centered at the same point, that is, permit
differences between self-regulatory terms. What con-
nectance properties are exhibited by the most stable
systems? Examination of Fig. 1c and d immediately
shows that only when discs have non-zero radii is it
possible for dynamical systems to have a stability
greater than that of their least self-regulated compo-
nent. The extent to which this greater stability can be
attained is governed by the connectance of these less
self-regulated variables with the rest of the system.
More highly connected systems (Fig. 1d) are poten-
tially more stable than those that are less well con-
nected (Fig. 1c). While May’s result is accurate in iden-
tifying highly connected systems as less likely to be
stable, connectance is an unambiguous requirement of
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Fi1Gg. 1. Locating eigenvalues of matrices in the complex plane (axes cross at the origin). Positions and radii of discs
are determined by a,; elements and the quantities Z};lvj#,- | a;| as stated by Gerschgorin’s theorems (see Analysis). Eigenvalues
are found within these domains subject to constraints of rules 2 and 3 outlined in text (see Analysis). Note that as a consequence
of rule 3, in all six examples (a—f) the sum of real parts of all eigenvalues must equal the sum of diagonal elements of the
matrix; this is equivalent to observing that real parts of eigenvalues and disc centers must share the same ‘‘center of gravity.”

(a) Two cases with three discs super imposed. (1) Three smaller discs all of identical radius and position (superimposed
on each other) containing three eigenvalues (denoted by grey arrows below the x-axis). Stability is determined by the real
part of the largest eigenvalue (hatched arrows in the diagrams), which must be negative if the equilibrium is to be stable;
the more negative this real part is, the more locally stable is the equilibrium. (2) Three superimposed discs with the radii of
all three increased by the same amount; the most negative eigenvalue can now become more negative (as indicated by white
arrows above x-axis), but in compensation, some eigenvalues must become more positive (in compliance with rule 3). Note
that the real part of the most positive eigenvalue cannot be less than the value taken by the diagonal elements.

(b) Add two more discs to the system (two more state variables, and thus, two more eigenvalues); once again the most
positive eigenvalue can become more positive.

(c) Let diagonal elements take on different values. Note that under some configurations the real part of the dominant
eigenvalue can now be less than the most positive a;.

(d) Note that the larger the radii of discs, the more stable the most stable equilibria can be.

(e) Note the requirement for this form of interactive stabilization is that less and more self-regulated variables of the
system must be connected. If the triplets of strongly self-regulated variables in () are not connected to the triplet of weakly
self-regulated variables, then each must conform separately to rule 3, and there are in effect two systems each equivalent to
that shown in (a).

(f) If the left and right disc systems are connected to each other, the system as a whole complies with the three rules,
permitting greater stability.
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“more stable’’ systems. Systems that have been sta-
bilized as a consequence of interactions will be referred
to as “‘interactively stabilized.”

More insight can be obtained by noting that the three
rules concerning location of eigenvalues can be validly
applied to any fully disconnected subset of a larger
system (see Fig. le and f). In order to realize the full
potential for interactive stabilization in a system, weak-
ly self-regulated variables must be connected to those
that are more strongly regulated. Thus a key require-
ment of interactive stabilization is the precise location
and magnitude of interactions between strongly and
weakly self-regulated system variables.

Numerical analyses (Fig. 2) suggest that while sta-
bility is not simply or strongly related to number or
strength of connections between weak and strong self-
regulators, systems with more of this form of con-
nectance do tend to be more stable than those with less.
Furthermore, whether high connectance results from
many weak, or few strong, interactions has only a small
bearing on distributions of leading eigenvalues (see
Fig. 2). This is consistent with a body of literature that
focused on products of interaction strength and fre-
quency (May 1974, McNaughton 1978, Rejmanek and
Stary 1979, Winemiller 1990).

This approach is not suitable for anticipating specific
effects of removing links and variables from the system
(the latter has been referred to as ‘‘species deletion
stability,” see Pimm [1982]). The elements of the Ja-
cobian matrix are partial derivatives evaluated at a
specified equilibrium, and structural perturbations to
the model are likely to change this equilibrium position.
Furthermore, as described above, the iith diagonal el-
ement of the Jacobian matrix will not generally be a
function only of the ith variable and parameters specific
to it, but may be a function of any number of other
variables and their parameters. However, the removal
of strongly regulated and/or connected variables and
links between strongly and weakly self-regulated var-
iables carries a clear risk of initiating instability, while
more limited consequences might be anticipated from
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removal of weakly connected variables regardless of
their self-regulatory capacity, links between weakly
self-regulated variables, and weakly self-regulated var-
iables.

DiscussioN

Previous studies have focused on average stability
properties of model dynamical systems constructed us-
ing different algorithms. That approach leaves open the
possibility that real systems are somehow not average,
and might not therefore conform to hypotheses gen-
erated by examining average model properties. This
problem can be turned around by asking: What prop-
erties must ecosystems have to be as stable as math-
ematically possible? By examining the most extreme
stability properties of dynamical systems, long-stand-
ing conceptual paradoxes can be more clearly under-
stood. May’s (1971, 1972, 1974) results regarding de-
stabilizing influences of frequency and interaction
strength refer only to the case when variation in the
capacity of each system variable to self-regulate is
small relative to variation in connectance. When these
restrictions are removed, connectance becomes a re-
quired property of more stable systems — specifically,
my analysis suggests that interactions binding less reg-
ulated ecosystem elements to those that are more reg-
ulated are critical properties of the most stable model
ecosystems.

Mathematically this is a simple and obvious result—
yet it provides a theoretical basis for a number of eco-
logically interesting speculations. First, it suggests that
studying average properties of model dynamical sys-
tems may be quite misleading. Second, it will not be
possible to understand the relationship between sta-
bility and complexity (as here defined) without under-
standing something about differential self-regulation of
ecosystem variables. Third, ecosystems—especially
those whose dynamics are governed by many vari-
ables—might require very particular connective con-
figurations to remain stable, and therefore some links,
weak or strong, may be critical to ecosystem stability.

—

Fic. 2.

Count density functions obtained from examining real parts of the largest eigenvalues (A) of 10000 10 X 10

matrices assumed to be Jacobian matrices. Matrices were constructed randomly in the following manner: In each case half
the diagonal elements were set to —5, and half to —0.5, and off-diagonal elements in a row sum to |3.0]. There are 3, 4,
and 5 off-diagonal elements per row, in the top, middle, and lower panels, respectively. All but the last off-diagonal elements
in each row are randomly selected from uniform distributions [—1.0, 1.0]; the last is chosen so that off-diagonal elements
of the matrix row sum to |3.0|. In the right-hand panels (b, d, and f), all but the last-chosen off-diagonal elements in each
row connect weakly self-regulated elements with more strongly self-regulated ones. In the left-hand panels (a, c, and e), all
but the last off-diagonal elements link strongly self-regulated elements with strong ones, or weakly self-regulated elements
with weak ones. The last off-diagonal elements are positioned randomly subject to the constraint that the resulting network
be a single connected entity. This procedure results in all matrices having identical and constant disc structure (diagrammed
above panels). Note that, regardless of overall connectance, matrices with leading eigenvalues more negative than the most
positive diagonal entry (—0.5) are at least twice as likely in matrices in which weakly and strongly self-regulated elements
are more often linked to each other (right-hand panels) compared to when such links are rare (left-hand panels).
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In the absence of variability in self-regulatory capacity
of ecosystem variables these models certainly suggest
that stability is maintained in spite of interspecific in-
teraction (e.g., Caswell 1976)—but when sufficient dif-
ferential self-regulatory capacity exists, stability may
be maintained because of such interaction.

While theory of this sort can only offer the most
general of guidelines with respect to the likely fragility
of ecosystems, it is consistent with the notion that eco-
system-conservation approaches are most safely at-
tempted from a whole assemblage basis rather than a
species-based approach, and considerable peril could
result from loss of allegedly redundant species.
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