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Introduction



Energy Proportional Computing
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Figure 2. Server power usage and energy efficiency at varying utilization levels,
from idle to peak performance. Even an energy-efficient server still consumes
about half its full power when doing virtually no work.



Recommendations for improving consolidation

e Recommended utilisation levels of 75% for Hyperscale server users and 45%

for smaller users in the US
o A. Shehabi et al., "United state data center energy usage report"”, 2016.

e Inthe UK, HMG Sustainable Technology Advice and Reporting (STAR) have
identified a “consolidation programmes to maximise use of capacity” as best

practice for achieving this goal.
o Depart for Environment Food & Rural Affairs, "Sustainable Technology Annual report 2018 to
2019," October 2019.



Commitments by Cloud Providers

Microsoft committed to carbon neutrality by 2030
Amazon committed to carbon neutrality by 2040
What about Edge devices?

In some ways better as they do not need supporting infrastructure for cooling
o Ahvar, E., Orgerie, A.C. and Lebre, A., 2019. Estimating energy consumption of cloud, fog and
edge computing infrastructures. IEEE Transactions on Sustainable Computing.

However, mostly focused on latency reduction only.

This can lead to low utilisation of resources

Mobile-Kube attempts to balance the latency reduction and consolidation
objectives for containerised services on the edge

Also consider user mobility and how this affects the objectives



Container Orchestration Frameworks

Containerized softwares
Google Borg

Docker Swarm
Kubernetes!
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Reinforcement Learning
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Contribution of this work

e A new design for reducing the latency and energy consumption on
Kubernetes-driven edge nodes.

e Use of RL for achieving a trade-off between maintaining reasonable energy
consumption and latency. Proposed the use of a distributed RL method
named IMPALA.

e To test the efficiency of our method we have implemented of a simulation
framework for training and a real-world emulator on top of real-world
Kubernetes.

e The RL based method is able to achieve similar energy efficiency of the
heuristic methods while reducing the latency by 43%.



Proposed RL Solution
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Proposed RL solution (Overview)
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Proposed RL solution (cont)

e States: concatenation of two arrays
o An array containing the service placements
o An array containing the users closest station

e Actions: next placement of the services in the nodes
e Rewards
R = wle + ’ngE
o The latency objective is computed from the inverse of the total distances of the the users from

their service
o The binpacking objective is simply the number of empty servers

e Policy network: A 64*64 fully connected neural network



Used RL Methods

e \We used three algorithms for our experiments:

e Vanilla Policy Gradient: The basis of all policy gradient methods used
before in system research for bitrate adaptation

e PPO: A more advanced version of the policy gradient which tries to minimize
the variance by clipping the objective function

e |IMPALA: One of the newest widely used distributed RL algorithm with fast
convergence and low variance

e Also use heurstic methods (greedy and binpacking) for comparison



System Design



Kubernetes Internal Structure
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Kubernetes Resource Model

e Request: reserved amount
of resource for a container

e Limit: Maximum amount of
Of resource for a container

e Exceeding limit: OOM error for memory
and throttling for CPU

e \We used resource request for scheduling
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Kubernetes Default Scheduler

e Pods the smallest scheduling unit in kubernetes
e Currently the scoring is done based-on the rules defined by
Kubernetes user and also heuristic algorithms
e Nodes available resources
e Requested resources
e A two step process
o Filtering: Filtering out suitable nodes
o Scoring: Ranks the nodes based-on a sets of criteria to find the
most suitable node
e Assign the pod to the node with the highest rank



Imitations of the default scheduler

e Using the Kubernetes builtin custom scheduler feature was not feasible

e No migration of the pods based on external metrics

e We implemented this feature as deleting on pods in one place and restarting
it in the destination node outside the cluster using the Python client API
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Our design for changing the Scheduler

Using the Python client API of Kubernetes

our own scheduler which resides outside the K8S cluster

The user mobility side is simulation
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Cluster Simulator (Training)
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Experimental Setup and
Results



System setting and datasets

e Cabspotting dataset: The Cabspotting dataset contains GPS traces of taxi
cabs in San Francisco (USA), collected in May 2008.

http://www.antennasearch.com/ for the location of cell towers

Python simulator for user mobility
8 kubernetes GKE nodes and 16 stateless services
Reward scaling



http://www.antennasearch.com/

Picture of the network

e Co-located stations and servers
e 5 minute interval mobility
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Results - Training

e For training we generated a dataset based on the user locations around the servers

e A simulator that used the real-world K8S for training
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Average # of empty servers (s)

Results - Test

e Average over 20 sample episode run
e On the cluster instead of the simulator

Average empty servers for different algorithms
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Results - Example episode

e Single episode run per timestep
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Directions for future works

e Checkpointing of stateful services
e Kubernetes full implementation
e Hierarchical and multi-agent RL



Thank you for your attention!

Source code available at: https://github.com/saeid93/mobile-kube.qit
Currently under review in Transactions of Service Computing

Early version of work https://ieeexplore.ieee.org/abstract/document/9284153
Email: j.doyle@gmul.ac.uk



https://github.com/saeid93/mobile-kube.git

