Mobile-Kube: Mobility-aware and Energy-
efficient Service Orchestration on
Kubernetes Edge Servers

Saeid Ghafouri, Alireza Karami, Danial Bidekani Bakhtiarvand,
Aliakbar Saleh Bigdeli, Sukhpal Singh Gill and Joseph Doyle

Introduction

Energy Proportional Computing

100
Typical operating region

80
70

50
40
30
20
10

Server power usage (percent of peak)

Barroso, L.A. and
w—=Power Holzle, U., 2007. The
=== Energy efficiency |
| case for energy-
0 10 20 30 40 5 60 70 8 9 100 proportional
Utilization (percent) .

computing. Computer,

40(12), pp.33-37.

Figure 2. Server power usage and energy efficiency at varying utilization levels,
from idle to peak performance. Even an energy-efficient server still consumes
about half its full power when doing virtually no work.

Recommendations for improving consolidation

e Recommended utilisation levels of 75% for Hyperscale server users and 45%

for smaller users in the US
o A. Shehabi et al., "United state data center energy usage report"”, 2016.

e Inthe UK, HMG Sustainable Technology Advice and Reporting (STAR) have
identified a “consolidation programmes to maximise use of capacity” as best

practice for achieving this goal.
o Depart for Environment Food & Rural Affairs, "Sustainable Technology Annual report 2018 to
2019," October 2019.

Commitments by Cloud Providers

Microsoft committed to carbon neutrality by 2030
Amazon committed to carbon neutrality by 2040
What about Edge devices?

In some ways better as they do not need supporting infrastructure for cooling
o Ahvar, E., Orgerie, A.C. and Lebre, A., 2019. Estimating energy consumption of cloud, fog and
edge computing infrastructures. IEEE Transactions on Sustainable Computing.

However, mostly focused on latency reduction only.

This can lead to low utilisation of resources

Mobile-Kube attempts to balance the latency reduction and consolidation
objectives for containerised services on the edge

Also consider user mobility and how this affects the objectives

Container Orchestration Frameworks

Containerized softwares
Google Borg

Docker Swarm
Kubernetes!

— &

%

docker kubernetes

Edge Computing

Edge Computing

DATA CENTER

INTERNET OF THINGS

Problem statement

Service 8

Reinforcement Learning

New Environment State
&
Reward

RN
X

Action Agent

g " a‘b) \
& (s'|s, a)
P()(T) M wrkov (h in on (s, a)

P((S11, Arg1)|(Se, a0)) =
p(Serilse, ad)mg(acri|si41)
Sz

T
po(s1,a, ST —p S HT” a;ls;)p "!t+|"'!t 1,

Contribution of this work

e A new design for reducing the latency and energy consumption on
Kubernetes-driven edge nodes.

e Use of RL for achieving a trade-off between maintaining reasonable energy
consumption and latency. Proposed the use of a distributed RL method
named IMPALA.

e To test the efficiency of our method we have implemented of a simulation
framework for training and a real-world emulator on top of real-world
Kubernetes.

e The RL based method is able to achieve similar energy efficiency of the
heuristic methods while reducing the latency by 43%.

Proposed RL Solution

Latency Reduction objective

W server

® B A
T e ’ [] A access
. e @ user
o . P
p

W server
A access
@® user

Proposed RL solution (Overview)

Observe state s

Based on the
latency and bin
The users _ I bin
and packing objective glf&itszernetes
services ~
placement \ Reward r e
li _
et DNN 1? (2 le);) New service
N Ty placement
Stzte " Take action a | Environment
/'
parameter 6

Proposed RL solution (cont)

e States: concatenation of two arrays
o An array containing the service placements
o An array containing the users closest station

e Actions: next placement of the services in the nodes
e Rewards
R = wle + ’ngE
o The latency objective is computed from the inverse of the total distances of the the users from

their service
o The binpacking objective is simply the number of empty servers

e Policy network: A 64*64 fully connected neural network

Used RL Methods

e \We used three algorithms for our experiments:

e Vanilla Policy Gradient: The basis of all policy gradient methods used
before in system research for bitrate adaptation

e PPO: A more advanced version of the policy gradient which tries to minimize
the variance by clipping the objective function

e |IMPALA: One of the newest widely used distributed RL algorithm with fast
convergence and low variance

e Also use heurstic methods (greedy and binpacking) for comparison

System Design

Kubernetes Internal Structure

Master node

@

Worker node

=3

P

e

h 4
™

>

kubelet kube-proxy
I

Ky

AP server

Pod l

replication, namespace,

controller-manager
semviceaccounts, ...

{ scheduler

o

image from: https://www.aquasec.com/cloud-native-academy/kubernetes-101/kubernetes-complete-guide/

g

Pod | ¥

F
o=

docker

Worker node

(ub elet

kube-proxy

Pod ..|,

docker

F
=]

Kubernetes Resource Model

e Request: reserved amount
of resource for a container

e Limit: Maximum amount of
Of resource for a container

e Exceeding limit: OOM error for memory
and throttling for CPU

e \We used resource request for scheduling

Memory

8
>
g 10000 A ﬂ ﬂ ﬂ ﬂ ﬂ
o
g l AAnN
= 5000 U U — workload
-y e request
S
E
oA
0 lUUO 2000 3000 4000 5000
timesteps in second
CPU
g M A
2 4000 i At i
o
2
= A
£ 2000 —— workload -
W
> — request
E — limit
01 T T T T T T
0 1000 2000 3000 4000 5000

timesteps in second

r.io/ubuntu-slim:@.1

: 156Mi

", "while true; do timeout 0.5s yes >/dev/null; sleep @.5s; done"

Kubernetes Default Scheduler

e Pods the smallest scheduling unit in kubernetes
e Currently the scoring is done based-on the rules defined by
Kubernetes user and also heuristic algorithms
e Nodes available resources
e Requested resources
e A two step process
o Filtering: Filtering out suitable nodes
o Scoring: Ranks the nodes based-on a sets of criteria to find the
most suitable node
e Assign the pod to the node with the highest rank

Imitations of the default scheduler

e Using the Kubernetes builtin custom scheduler feature was not feasible

e No migration of the pods based on external metrics

e We implemented this feature as deleting on pods in one place and restarting
it in the destination node outside the cluster using the Python client API

i Clusters | Cluster - | ‘ kube-system, default, con... ¥ ‘ RESET SAVE

% Workloads = Filter Filter workloads

& Services & Ingress [m} Name P Status Type Pods Namespace Cluster

Applications [m} s0n0-gimademtbn @ Running Pod 171 consolidation cluster-2

O sonl-ulerofrdvo A Terminating Pod 171 consolidation cluster-2

H Configuration [0 s10n1-pyctdgqvps @ Running Pod n consolidation cluster2

O Storage O s1in3-hmukegryyv @ Running Pod 171 consolidation cluster-2
O s12n3bbnmbzuocs @ Running Pod 11 consolidation cluster2

Object Browser

O s73n3-abugurgsqe @ Running Pod " consolidation cluster-2

4 Migrate to containers (] s14n3-witkvvcocj @ Running Pod 11 consolidation cluster-2

Config Management O s15n3fsehxhpkou @ Running Pod 171 consolidation cluster-2
O sin1-maxiepvdnd @ Running Pod 111 consolidation cluster-2
O s2nl-wpleapkilc @ Running Pod 171 consolidation cluster-2
(] s3n1-vgoptsffzl @ Running Pod 11 consolidation cluster-2
[m} s4n1-czpsjpsida @ Running Pod 171 consolidation cluster-2
O sSnligjosothek @ Running Pod 11 consolidation cluster-2
O séniksjeadjcik @ Running Pod " consolidation cluster-2
(] s7n1-trkpvitzsw @ Running Pod 171 consolidation cluster-2

¥ Marketplace O s8nldcvjiascpm @ Running Pod 171 consolidation cluster-2

Our design for changing the Scheduler

Using the Python client API of Kubernetes

our own scheduler which resides outside the K8S cluster

The user mobility side is simulation

Kubernetes Documentation / Concepts / Scheduling, Preemption and Eviction <>Code (O Issues 46 n

Q, Search

/ Scheduling Framework

Home P master ~ P 8 branches

Scheduling Framework

FEATURE STATE: Kubernete

Getting started
Concepts 1.19 [stable
Scheduling, Preemption
and Eviction

github

The scheduling framework is a pluggable architecture for the Kubernetes
scheduler. It adds a new set of "plugin” APIs to the existing scheduler. Plugins
are compiled into the scheduler. The APIs allow most scheduling features to
be implemented as plugins, while keeping the scheduling "core” lightweight

jescheduler
Kuber

Schedules

etes
cmd/descheduler

ng Pods to and maintainable. Refer to the design proposal of the scheduling framework docs
for more technical information on the design of the framework.
examples
hack

B kubernetes-sigs / descheduler Pusic

© 27 tags

& kBs-ci-robot Merge pull request #4695 from a7|fiiveness-template -

A better design for this should be fully integrated into the K8S

@ watch 50 ~

Pull requests 13 (D Actions [Projects [0 wiki () Security |~ insights

e

1,006 commits

Goto file

+ 175t648 5 days ago

d Manifests for v0.22.0 5 months

fix typo minPodL ifeTimeSeconds 2 months ago

Bumn oo version in oo.mad to 00117 2 manths a0o

For the emulation setting we discard the built in scheduler decision and used

Y Fork 428 fr sr 23 -

About
Descheduler for Kubernetes
& github.com/kubernetes-sigs/desched...

hacktoberfest kBe-sig-scheduling

00 Readme

Lo 2.0 License
B c of conduct
44

® 50 watching

Cluster Simulator (Training)

node 1 node 2

System design

Receives and apply
the next placement
of the services

Kubernetes Cluster (Test)

Sends
the state of
the cluster

Kubernetes Python
API connection

o)

receives node 1 node 2 node 3
— the state
of the cluster the cluster Service 1 Sorvice 2 Service & Services. Service 7
Sends the next
I t of th Receives and apply sorvice 3 sarvico & senices
[services he next placement————]
of the services

utisation server

Mergethe
Mobility Si k /

lib

AL Agent

calculate the reward

Kes State +
‘Simulator State

Or

L

Heuristic Methods

Decision Making Agent
& .

OpenAl Gym .-

environment ¢

Controller -

=0

Simulated connection
of user to service

Experimental Setup and
Results

System setting and datasets

e Cabspotting dataset: The Cabspotting dataset contains GPS traces of taxi
cabs in San Francisco (USA), collected in May 2008.

http://www.antennasearch.com/ for the location of cell towers

Python simulator for user mobility
8 kubernetes GKE nodes and 16 stateless services
Reward scaling

http://www.antennasearch.com/

Picture of the network

e Co-located stations and servers
e 5 minute interval mobility

T g . " .
.:' ° 7_.‘," ® user @® user ® user
L _m
/".J{
pd []
//
e P
o
/ ° e ° - ° ° +
qoo ._;“] ':. :‘....
¢ * /.. ° * ® w8 4
/ ' X ° 00‘
[] ® * ® o
/ - _{ ° = o °
,_,_./ ° * e
16 users 32 users

48 users

Results - Training

e For training we generated a dataset based on the user locations around the servers

e A simulator that used the real-world K8S for training

users 16 # users 32 # users 48
6 v 6 —r 6 -
3 2 /(r 2
@5 @5 T 5
m 4 o
2 2 2
a] H
>4 >4 241
a Q [=%
£ £ £
W L L
5 34 53 G 3
#* * #
o o o
g g g
521 g2 g2
> > >
< < <
1 1 1
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0
Training step le6 Training step le6 Training step le6
users 16 # users 32 # users 48
0.85
2.0 1
2.4 1
0.80
1.8
0.75
) z 22
g g g
= 0701 1.6 kS
o v o
@ 0.65 1 g 2.0
g $ 141 g
< 0.60 - < <
1.8 4
0.55 1 1.2
0.50 1
0.0 05 10 15 2.0 0.0 0.5 1.0 15 2.0 0.0 05 1.0 15 2.0
Training step le6 Training step le6 Training step 1le6

— PG
— PPO
—— IMPALA

— PG
—— PPO
—— IMPALA

empty servers

Average network
latency

Average # of empty servers (s)

Results - Test

e Average over 20 sample episode run
e On the cluster instead of the simulator

Average empty servers for different algorithms

™~
m

number of users

empty servers

latency_greedy
PPO

PG

IMPALA
binpacking

Average latency (s)

Average latency for different algorithms

o~
m

number of users

Average latency

binpacking

PPO

IMPALA

PG

latency greedy

Results - Example episode

e Single episode run per timestep

users 16 # users 32 # users 48
6 61 6
) J) C)
0 3] 0 37 0 57
v o v
2 e c
8 41 341 3 44 —— binpacking
> > >
E‘ :g_ -é_ ~——— IMPALA
S 3 5 34 c 34 — PG
s k] ‘s — PPO
#* 5 #* 5] #* 5 —— latency_greedy
w Ql L2
o o o
o o ©
$ 14 £ 11 21
< < <
0 0 04
5’0 l(l)O 1.;:0 2('30 (’) SIO 160 15’30 260 6 5’0 160 150 260
Episdoe steps Episdoe steps Episdoe steps
users 16 # users 32 # users 48
1.75 4.5
3.01
1.50 4.0
25
1.25 3.51
> > >
e < 2 3.0 —— binpacking
g 1.00 g 2.04 E s —— PPO
& @ © 2.5 —— IMPALA
20.75 2 2 — PG
] 5 1.5 8
z > > 2.04 —— latency_greedy
< 0.50 < 2
1.01 1.5
0.25
1.01
0.00 0.5
6 5’0 1(')0 150 260 5‘0 160 150 Z(I)O (I) 5‘0 160 léO 260

Episdoe steps

Episdoe steps

Episdoe steps

empty servers

Average
network latency

Directions for future works

e Checkpointing of stateful services
e Kubernetes full implementation
e Hierarchical and multi-agent RL

Thank you for your attention!

Source code available at: https://github.com/saeid93/mobile-kube.qit
Currently under review in Transactions of Service Computing

Early version of work https://ieeexplore.ieee.org/abstract/document/9284153
Email: j.doyle@gmul.ac.uk

https://github.com/saeid93/mobile-kube.git

