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• EC system with 𝑛 distributed nodes: 𝒩 = {𝑁1, … , 𝑁𝑛}

• Node 𝑁𝑖 has its own local data 𝐷𝑖 = { 𝑥, 𝑦 l}l=1
𝐿𝑖 , with 𝐿𝑖 

input-output pairs 𝑥, 𝑦 ∈ 𝒳 × 𝒴

• The input 𝑥 = 𝑥1, … , 𝑥𝑑
⊤ ∈ 𝑅𝑑 is a 𝑑-dim feature 

vector, which is assigned to output 𝑦 ∈ 𝒴 used for 

regression (e.g., 𝒴 ⊆ 𝑅) or classification predictive 

tasks (e.g., 𝒴 ⊆ {−1,1})

• The neighbourhood of 𝑁𝑖: 𝒩𝒾 ⊆ 𝒩 ∖ {𝑁𝑖}
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Drift Classification

𝑃 𝑥 ≠ 𝑃 𝑥′ ∧ 𝑃 𝑦 = 𝑃 𝑦′

𝑃 𝑥 ≠ 𝑃 𝑥′ ∧ 𝑃 𝑦 ≠ 𝑃 𝑦′

𝑃 𝑥 ≠ 𝑃 𝑥′ ∧ 𝑃 𝑦 ≠ 𝑃 𝑦′

∧ 𝑃 𝑦 𝑥 ≠ 𝑃 𝑦′ 𝑥′

Virtual Drift:

Actual Drift:

Total Drift:

Predictive Services: Regression



Effects of Concept Drifts
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Performance of local model 𝑓1 Performance of enhanced model ഥ𝑓2 (SVR)



Objective
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• O1: Minimize 𝐸ℒ ഥ𝑓𝑖
′ 𝐷𝑘′  

(for node 𝑁𝑘)

• O2: Minimize 𝐸ℒ ഥ𝑓𝑖
′ 𝐷𝑗  

(for node 𝑁𝑗)

• O3: Reduce inter-node 

data transfer between 

nodes 𝑁𝑖 and 𝑁𝑘 (during 

maintenance)



Model Maintainability Strategies – GS (Sampling)
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• 𝑁𝑖: Node with enhanced model, with local data 𝐷𝑖

• 𝑁𝑗: Node to be surrogated, with local data 𝐷𝑗

• In this context, 𝑁𝑗 = 𝑁𝑘, 𝐷𝑗 = 𝐷𝑘
′

• Based on random sampling of 𝐷𝑗, i.e., Γ 𝐷𝑗 ⊂ 𝐷𝑗

• Sample mixing rate α =
Γ 𝐷𝑗

𝐷𝑗
∈ 0,1 , controlled by 𝑁𝑖

• Incremental learning supported?

• Yes: maintain model with Γ 𝐷𝑗

• No: Training from scratch with 𝐷𝑖
′

= 𝐷𝑖 ∪ {Γ 𝐷𝑗 }



Model Maintainability Strategies – CG (Centroid)
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• Input-output space 𝒳 × 𝒴 of 𝐷𝑗 is quantized

• The number of clusters 𝐾 depends on the size       

𝐿𝑖 = 𝐷𝑗  and mixing rate 𝜶 i.e., 𝐾 = 𝛼|𝐷𝑗|

• Γ 𝐷𝑗 =∪𝑘=1
𝐾 {𝑤𝑗𝑘}

• Does not transfer real data



Model Maintainability Strategies – ECG (Centroid+)
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• Input-output space 𝒳 × 𝒴 of 𝐷𝑗 is quantized

• 𝜆 introduced to control the duplication of centroids

• The number of clusters 𝐾 =
𝛼|𝐷𝑗|

𝜆

• For each cluster, sample the centroid and 𝝀 − 𝟏 

points ො𝑥, ො𝑦  from 𝒩 𝑤𝑗𝑘 , σ𝑗
2

• Γ 𝐷𝑗 =∪𝑘=1
𝐾 {𝑤𝑗𝑘 ∪ { ො𝑥, ො𝑦 ∼ 𝒩 𝑤𝑗𝑘 , σ𝑗

2 }}

• Does not transfer real data



Model Maintainability Strategies – MD (Generative Data)
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• μj =
σm=1

Dj
xm

Dj
∈ Rd, σj =

1

Dj
σ

m=1

Dj
xm − μj

2
∈ Rd, SEM ഥσj =

1

Dj
σm=1

Dj
ym−

σm=1

Dj
ym

Dj

2

Dj

∈ Rd

• 𝛍𝐣, 𝛔𝐣 and ഥ𝛔𝐣, alongside with 𝐟𝐣 are sent to Ni for mock data generation

• ϵj: random noise sampled from 𝓝 𝟎, ഥ𝝈𝒋
𝟐

• Γ Dj = { ෢𝒳j, ෢𝒴j : ෢𝒳j ∼ 𝒩 μj, σj
2 , ෢𝒴j = fj

෢𝒳j + ϵj}

• Does not transfer real data



Experiments & Evaluation – Virtual Drifts
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• Virtual drift did not affect the 

performance of ഥ𝑓2 negatively (red 

bar vs blue bar)

• Maintenance was able to improve 

the performance on 𝐷1
𝑣′ further 

(purple bar vs red bar) while 

keeping the performance on 𝐷1 

(green bar vs blue bar)

• CG & ECG are the best strategies 

overall



Experiments & Evaluation – Actual Drifts
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• ഥ𝑓2 could not handle the actual drift 

without maintenance (red bar vs 

blue bar)

• Maintenance was very effective, 

drastically improved the 

performance on 𝐷1
𝑎′ (purple bar vs 

red bar) while keeping the 

performance on 𝐷1 (green bar vs 

blue bar)

• CG & ECG are the best strategies 

overall



Experiments & Evaluation – Total Drifts
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• ഥ𝑓2 could not handle the total drift 

without maintenance (red bar vs 

blue bar)

• Maintenance was very effective, 

drastically improved the 

performance on 𝐷1
𝑡′ (purple bar vs 

red bar) while keeping the 

performance on 𝐷1 (green bar vs 

blue bar)

• ECG is the best strategy overall



Experiments & Evaluation – Effects on Other Node(s)
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Performance (on 𝐷1& 𝐷3) of the initial enhanced model ഥ𝑓2

Performance (on 𝐷3) of ഥ𝑓2 before & after maintenance with 𝐷1
𝑣′ 

• Strategies used to build the 

enhanced model initially affect the 

performance of ഥ𝑓2 on 𝐷3 

• 𝐷3 is almost indifferent to the 

strategies used for the 

maintenance



Experiments & Evaluation – Effects on Other Node(s)
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• Identical results for maintenance 

with 𝐷1
𝑎′ and 𝐷1

𝑡′

• For all 3 kind of drifts, the 

maintenance did not affect the 

other node

Performance (on 𝐷1) of ഥ𝑓2 before & after maintenance with 𝐷1
𝑎′

Performance (on 𝐷1) of ഥ𝑓2 before & after maintenance with 𝐷1
𝑡′



Experiments & Evaluation – Data Transfer
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• Performance on 𝐷1
𝑣′, 𝐷1

𝑎′, 𝐷1
𝑡′

• Given the same 𝛼, both GS and 

CG transfer the same amount of 

data

• For MD, the statistics and the 

model need to be transferred are 

at the same scale of GS and CG

• For ECG, we manipulate 

intensity 𝝀 to directly control the 

amount of transferred data

• Ideal: bottom left



Experiments & Evaluation – Data Transfer
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• Performance on 𝐷3

• The magnitude of variation in 

performance is negligible

• ECG is working very well in both 

reducing the data transferred and 

maintaining the performance



Experiments & Evaluation – Data Transfer
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• Results got with realistic dataset: 

𝐺𝑁𝐹𝑈𝑉∗

• Similar results to what we got 

before

• Only 5% - 10% data transfer 

needed for ECG to achieve the 

best performance

*: https://archive.ics.uci.edu/dataset/452/gnfuv+unmanned+surface+vehicles+sensor+data



Conclusions
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• Investigated the problem of maintaining resilient enhanced models in 

DML environments

• Proposed 4 model maintainability strategies

• Evaluated the effects of these strategies on 3 kinds of drifts

• Proved the effectiveness and efficiency of proposed approaches
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