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Background

System Formulation

Local Group
EC system with n distributed nodes: ' = {Ny, ..., N,,} |
Node N; has its own local data D; = {(x, y)l}le"l, with L; |
input-output pairs (x,y) € X XY
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The input x = [xq, ...,x4]" € R% is a d-dim feature
vector, which is assigned to output y € Y used for |
regression (e.g., Y < R) or classification predictive
tasks (e.g., Y € {-1,1})

I
The neighbourhood of N;: V; € V' \ {N;} | @ @
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Background

Predictive Services: Regression Drift Classification

o = Virtual Drift:
T gl PO RPENP0 =P
| . l_.-"‘- 1 Actual Drift;
. e o, . P(x) # P(x") AP(y) # P(y")

. Total Drift:
. K P(x) # P(x")AP(y) # P(y")
5 10 15 20 /\P(ylx)ip(yllx')




i UIllVCl‘SltV

of Glasgow

Effects of Concept Drifts
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Performance of enhanced model £, (SVR)

TABLE 1
PERFORMANCE OF DIFFERENT MODELS
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RMSE

Model D1 Dy D DY
f1 0.47 129 806 7.93
fES(SVR) | 173 1.69 7.57 7.4l
%G(SVR) 1.69 1.68 7.57 741
%JS(GBR) 1.54 219 626 6.12
%G (GBR) | 1.50 217 629 6.15

1" corresponds to virtual drifted D
D{" corresponds to actual drifted D

DY corresponds to total drifted D,
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O1: Minimize EL (fi’(Dk’))
(for node Ng)

02: Minimize EL (fl’(D]))
(for node N;)

0O3: Reduce inter-node
data transfer between
nodes N; and N, (during
maintenance)
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N;: Node with enhanced model, with local data D;
N;: Node to be surrogated, with local data D;

In this context, N; = Ny, D; = Dy’

Based on random sampling of D;, i.e., I['(D;) c D;

r(2,)]

Djl
Incremental learning supported?

Sample mixing rate a = € (0,1), controlled by N;

- Yes: maintain model with T'(D;)

- No: Training from scratch with D; = D; U {I'(D;)}
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® Selected Point
— @ Regular Point
: _ / N "z Centroid
* Input-output space X X Y of D; is quantized ® PY [ Pl
o0 \ e o\
* The number of clusters K depends on the size k ’ ® o /
L; = |D;| and mixing rate a i.e., K = a|Dj] \ ¢ o © ? o |
® o / \Q o
_ K
* T(D;) =Ui=1 {wji} ~e "o __ - _ 7
- o ~
 Does not transfer real data °
L T
(o0 ® %o ]
[ [ ]
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Model Maintainability Strategies — ECG (Centroid+)
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® Selected Point

@ Regular Point
— 2% Centroid

/ N O Sampled Point

Input-output space X X Y of D; is quantized ° .\ /o —

A introduced to control the duplication of centroids (Q ‘ ® o /
[ .. P .% }

a|Dj|

The number of clusters K = l’ ® o / ‘Q Py _

¢ o ~
For each cluster, sample the centroid and 4 — 1 - e ~
points (%,9) from N (wjy, o7) 4 ® o4\

o
o ( o
[(D;) =Ug=1 Wy U {(%,9) ~ N (wj, 67 )1} * ° /
v %e ®

Does not transfer real data 9
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Model Maintainability Strategies — MD (Generative Data)

1 |Di| ZIDj—|1ym 2
° _ z:m= Xm d _ |D | d — |D |D |
uj_WER’O-j_ |D_]|Z (Xm—p.]) € R%, SEM o

* M, o5 and o;j, alongside with f; are sent to N; for mock data generation
* ¢ random noise sampled from ¥ (0,57)
+ T(D) ={(%,9): X ~ M(w, 07). Gy = £056) + &}

 Does not transfer real data



=D Of GlaSgovgr

Experiments & Evaluation — Virtual Drifts

RMSE
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Virtual drift did not affect the
performance of £, negatively (red
bar vs blue bar)

Maintenance was able to improve
the performance on D{’ further
(purple bar vs red bar) while
keeping the performance on D,
(green bar vs blue bar)

CG & ECG are the best strategies
overall
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Experiments & Evaluation — Actual Drifts
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f> could not handle the actual drift
without maintenance (red bar vs
blue bar)

Maintenance was very effective,
drastically improved the
performance on D{' (purple bar vs
red bar) while keeping the
performance on D, (green bar vs
blue bar)

CG & ECG are the best strategies
overall
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Experiments & Evaluation — Total Drifts
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f> could not handle the total drift
without maintenance (red bar vs
blue bar)

Maintenance was very effective,
drastically improved the
performance on DY (purple bar vs
red bar) while keeping the
performance on D; (green bar vs
blue bar)

ECG is the best strategy overall



, U e t School of Computing Science
bl N1versl Yy Knowledge & Data
= O_}(G J.SO"O\V Engineering Systems

Experiments & Evaluation — Effects on Other Node(s)

1.8
Dy) «  Strategies used to build the

Ds) enhanced model initially affect the
' I performance of f, on D,
N . =

Performance (on Dl& D3) of the |n|t|al enhanced model f

—
9]

BMSE
~

D5 is almost indifferent to the
strategies used for the
maintenance

Performance (on D;) of £, before & after maintenance with DY’
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Experiments & Evaluation — Effects on Other Node(s)

RMSE

RMSE

[ f2(D3)
B 5Dy

ECG
Performance (on Dl) of f> before & after malntenance with D

W £;(D;)
1 II II I II 1"

ECG
Performance (on Dl) of f> before & after mamtenance with D
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Identical results for maintenance
with D& and D¥'

For all 3 kind of drifts, the
maintenance did not affect the
other node
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Experiments & Evaluation — Data Transfer
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Performance on D', DY, D¥'

Given the same «, both GS and
CG transfer the same amount of
data

For MD, the statistics and the
model need to be transferred are
at the same scale of GS and CG

For ECG, we manipulate
intensity 4 to directly control the
amount of transferred data

Ideal: bottom left
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Experiments & Evaluation — Data Transfer

e o e o o
=GSr zCGr 7zMDr

f2 af2

f 2GS’, f gG’, f l;ID’(D‘f'retra.ined)

=GSr zCGr zMDr

fa fa L f3 (Dt’retra.ined) .

ECG (DY retrained)

(D{'retrained)
(D¥retrained)

ECG

ECGf

f

1.44 1.46

,fy  (DVretrained) °
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Performance on D,

The magnitude of variation in
performance is negligible

ECG is working very well in both
reducing the data transferred and
maintaining the performance
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Experiments & Evaluation — Data Transfer
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7o F9C FaP (DY retrained) * Results got with realistic dataset:
Fi\fa ' Fa' (DYretrained) GNFUV*
=GSt zCGr zMDt
, , DYretrained ..
Ta o1 vfa (Dyretmined) «  Similar results to what we got

fo  (D¥retrained)

~ECGt

fo  (D{'retrained)

f fCG' (DYretrained)

before

«  Only 5% - 10% data transfer
needed for ECG to achieve the
best performance

*: https://archive.ics.uci.edu/dataset/452/gnfuv+unmanned+surface+vehicles+sensor+data
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Conclusions

* Investigated the problem of maintaining resilient enhanced models in
DML environments

« Proposed 4 model maintainability strategies

« Evaluated the effects of these strategies on 3 kinds of drifts

» Proved the effectiveness and efficiency of proposed approaches
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Thank you!

Qiyuan Wang oS
Qiyuan.Wang@glasgow.ac.uk gt
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